MHB From the marginal cost to the total cost.

  • Thread starter Thread starter Francobati
  • Start date Start date
  • Tags Tags
    Marginal
AI Thread Summary
The discussion focuses on deriving the total cost (TC) from the marginal cost (MC) function for two companies. The marginal cost is defined as $MC_{i}(q)_{i}=q_{i}+10$, and the goal is to integrate this to find the total cost. By applying integration and the Fundamental Theorem of Calculus, it is established that with no fixed costs, the total cost can be expressed as $TC=\frac{1}{2}q^2+10q$. The parameters used in the integration confirm that the coefficients align with the given marginal cost function. This process illustrates the relationship between marginal and total costs in economic analysis.
Francobati
Messages
20
Reaction score
0
Hello. Can you help me figure out how to pass, integrating, by the marginal cost: $MC_{i}(q)_{i}=q_{i}+10$ to the total cost: $TC=\frac{1} {2}q_i^2+10q_{i}$?
$i=1,2$, are the two companies. $q_{i}$ is the quantity. What are the calculations?
 
Mathematics news on Phys.org
Given a marginal cost $C_M$, a fixed cost $C_F$ and a quantity $q$, we are to assume (using the definition of marginal cost) for the total cost $C_T$:

$$\d{C_T}{q}=C_M$$

Now, if we integrate both sides w.r.t $q$, exchange the dummy variables of integration (and use a linear marginal cost function) and using the given boundaries, we obtain:

$$\int_{C_F}^{C_T}\,du=\int_0^q av+b\,dv$$

Applying the FTOC, there results:

$$C_T-C_F=\frac{a}{2}q^2+bq$$

Now, for this problem, it would appear there are no fixed costs ($C_F=0$), and we are given $(a,b)=(1,10)$, hence:

$$C_T=\frac{1}{2}q^2+10q$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
4K
Replies
1
Views
2K
Replies
4
Views
4K
Replies
1
Views
2K
Back
Top