MHB F's question at Yahoo Answers involving absolute extrema

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Absolute Extrema
Click For Summary
The absolute extrema of the function f(x) = x^3 - 2x^2 - 4x + 8 on the interval [-1, 3] are determined by evaluating critical points and endpoints. The critical values found are x = -2/3 and x = 2, with corresponding function values of approximately 9.48 and 0, respectively. The endpoint evaluations yield f(-1) = 9 and f(3) = 5. The absolute minimum occurs at (2, 0) and the absolute maximum at (-2/3, 256/27). This analysis provides a clear understanding of the function's behavior within the specified interval.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Math Question - Calculus!?

Find the absolute maxima and minima for f(x) on the interval [a, b].
f(x) = x3 − 2x2 − 4x + 8, [−1, 3]

absolute maximum
(x, y) =

absolute minimum
(x, y) =

Here is a link to the question:

Math Question - Calculus!? - Yahoo! Answers

I have posted a link there so the OP can find my response.
 
Mathematics news on Phys.org
Hello F,

The absolute extrema of a function on some interval can occur either at the critical values, or at the end-points of the interval.

To determine the critical values of the given function:

[math]f(x)=x^3−2x^2−4x+8[/math]

we equate the first derivative to zero, and solve for $x$:

[math]f'(x)=3x^2-4x-4=(3x+2)(x-2)=0[/math]

Hence, the critical values are:

[math]x=-\frac{2}{3},\,2[/math]

The critical points are then:

[math]\left(-\frac{2}{3},f\left(-\frac{2}{3} \right) \right)=\left(-\frac{2}{3},\frac{256}{27} \right)[/math]

[math](2,f(2))=(2,0)[/math]

The end-point values are:

[math](-1,f(-1))=(-1,9)[/math]

[math](3,f(3))=(3,5)[/math]

Since [math]0<5<9<\frac{256}{27}[/math] we may state that:

Absolute minimum occurs at $(2,0)$.

Absolute maximum occurs at [math]\left(-\frac{2}{3},\frac{256}{27} \right)[/math]

To F and any other guests viewing this topic, I invite and encourage you to post other absolute extrema questions here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K