Function of PD, PI, ID and PID microcontrollers on a system

  • Thread starter Thread starter Sam Groves
  • Start date Start date
  • Tags Tags
    Pd System
AI Thread Summary
Different microcontrollers, such as P, I, D, and PID, interact with systems in unique ways, affecting error and final values differently. The combination of these controllers yields results that depend on specific constants K0, K1, and K2, indicating that their interaction is more complex than a simple RGB analogy. Feedback compensation must be tailored to each system for optimal performance, as the effectiveness of PID controllers can vary based on the user's understanding of the system dynamics. While PID is commonly taught and used in industrial settings, many practitioners lack a deep theoretical understanding, which can lead to practical limitations. The derivative term (D) is often unnecessary and can complicate control unless its application is well understood, particularly in systems with rapid dynamics.
Sam Groves
Messages
11
Reaction score
0
Well different microcontrollers act differently on a system. A pure P microcontroller reduces the error and increases the final value , a pure I microcontroller nullifies the error and increases the final value and a pure D microcontroller increases the error and keeps the final value the same.

However when combining pure microcontrollers the net result will be somewhere in between right?

Since generally a microcontroller in the s domain can be written down as:K0+K1/s+K2s the net result depends on the constants K0,K1 and K2.Given K0,K1,K2 can we evaluate how the PID would act out?Is it like the RGB color or is it more complicated(K0 has greater weight than K1 or K2)?
 
Last edited by a moderator:
Engineering news on Phys.org
Sam Groves said:
Is it like the RGB color
No

Sam Groves said:
is it more complicated
Yes, it's more complicated. I don't think there's a good answer without knowing the nature of the system being controlled. Feedback compensation is tailored for each system to optimize performance based on desired behavior.

BTW, there's nothing special about PID. As a controls guy, I find it kind of annoying that that is what is always taught. You could have two integrator terms, no proportional term, etc. In fact my general advice is to just not use the derivative term unless you both need it and have a really good understanding of stability of feedback systems. It usually causes more problems than it solves.

Sorry, I don't know of a simple reference to explain this. You can search for "feedback compensation" to dig deeper; there's lots of good stuff on the web.
 
  • Like
Likes nsaspook and Dullard
@Dave:
I don't disagree with anything that you said. I think that the emphasis on 'PID' is a result of the fact that for most standard industrial control hardware (PLCs, etc.), 'canned' PID is what is available. Many of the people implementing controls in an industrial setting have little/no understanding of the (mathematical) theory behind the 'knobs' that they're turning when they 'tune' a system. There are some surprisingly good empiricists running around. They lack the classical training that EEs get, but their approach accounts for the practical limitations of feedback (accuracy, latency, etc.) that some EEs never seem to 'get'. Obviously, a trained EE (with actual experience) is ideal.

I agree that 'D' is much less commonly required. Where 'D' is rquired, you absolutely need to know what you're doing - It's not useful in a temperature control for an oven with a 12-Hour time constant. For servo-valves modulating the application of aggregate to multi-colored roof shingles zooming by at several FPS, it's absolutely required. 'D' can always (at least theoretically) 'improve' the response - knowing when it's worth the trouble is the trick.
 
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
Thread 'How Does Jaguar's 1980s V12 Dual Coil Ignition System Enhance Spark Strength?'
I have come across a dual coil ignition system as used by Jaguar on their V12 in the 1980's. It uses two ignition coils with their primary windings wired in parallel. The primary coil has its secondary winding wired to the distributor and then to the spark plugs as is standard practice. However, the auxiliary coil has it secondary winding output sealed off. The purpose of the system was to provide a stronger spark to the plugs, always a difficult task with the very short dwell time of a...
Back
Top