MHB Functional Equation: Solving for f(2012)

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Functional
Click For Summary
The functional equation \(f(x+y) = f(xy)\) leads to the conclusion that \(f\) is a constant function. Given that \(f\left(-\frac{1}{2}\right) = -\frac{1}{2}\), it follows that \(f(x) = -\frac{1}{2}\) for all \(x\). Consequently, \(f(2012)\) must also equal \(-\frac{1}{2}\). The reasoning confirms that the function does not vary with different inputs. Therefore, \(f(2012) = -\frac{1}{2}\).
juantheron
Messages
243
Reaction score
1
If $f(x+y) = f(xy)$ and $\displaystyle f\left(-\frac{1}{2}\right) = -\frac{1}{2}$. Then $f(2012) = $
 
Physics news on Phys.org
jacks said:
If $f(x+y) = f(xy)$ and $\displaystyle f\left(-\frac{1}{2}\right) = -\frac{1}{2}$. Then $f(2012) = $

Hi jacks, :)

Since, \(f(x+y) = f(xy)\) we have,

\[f\left(-\frac{1}{2}\right)=f\left(-\frac{1}{2}+0\right)=f\left(-\frac{1}{2}\times 0\right)=f(0)\]

Since, \(f\left(-\dfrac{1}{2}\right) = -\dfrac{1}{2}\)

\[f(0)=-\frac{1}{2}\]

Now,

\[f(2012)=f(2012+0)=f(2012\times 0)=f(0)=-\frac{1}{2}\]

Kind Regards,
Sudharaka.
 
jacks said:
If $f(x+y) = f(xy)$ and $\displaystyle f\left(-\frac{1}{2}\right) = -\frac{1}{2}$. Then $f(2012) = $

Observe:

\[f(x+y)=f(xy) \Rightarrow f(x)=f(0)\]

Hence \( f(x) \) is a constant function, so \(f(-1/2)=-1/2 \Rightarrow f(2012)=-1/2\) \)

CB
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
606
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
1K