Functional relation between u(x,y,z) and v(x,y,z)

Click For Summary
SUMMARY

The discussion centers on the functional relationship between differentiable functions u(x, y, z) and v(x, y, z), specifically under the condition that the gradients satisfy the equation ∇u × ∇v = 0. It is established that this condition is necessary for u and v to be functionally related by F(u, v) = 0. However, counterexamples demonstrate that the sufficient condition may not hold universally, particularly when considering cases where the gradients are non-zero yet do not imply a unique functional relationship. The necessity of continuous differentiability for the application of the Implicit Function Theorem is also highlighted.

PREREQUISITES
  • Understanding of vector calculus, specifically gradient and cross product operations.
  • Familiarity with the concept of functional relationships in multivariable calculus.
  • Knowledge of the Implicit Function Theorem and its conditions.
  • Experience with differentiable functions and their properties in three-dimensional space.
NEXT STEPS
  • Study the Implicit Function Theorem and its applications in multivariable calculus.
  • Explore examples of functional relationships between multivariable functions and their gradients.
  • Investigate counterexamples in functional analysis to understand the limitations of necessary and sufficient conditions.
  • Review vector calculus operations, focusing on gradient and cross product interpretations in physical contexts.
USEFUL FOR

Mathematicians, physics students, and anyone studying multivariable calculus or vector analysis who seeks to understand the conditions for functional relationships between differentiable functions.

arpon
Messages
234
Reaction score
16

Homework Statement


Let ##u## and ##v## be differentiable functions of ##x,~y## and ##z##. Show that a necessary and sufficient condition that ##u## and ##v## are functionally related by the equation ##F(u,v)=0## is that ##\vec \nabla u \times \vec \nabla v= \vec 0##

Homework Equations


(Not applicable)

The Attempt at a Solution


##\vec \nabla u## and ##\vec \nabla u## are the normal vectors to the constant ##u##-surface and the constant ##v##-surface respectively. As, ##\vec \nabla u \times \vec \nabla v= \vec 0##, i.e, ##\vec \nabla u## and ##\vec \nabla v## are in the same (or opposite) direction for a particular value of ##(x, y, z)##, a constant ##u##-surface also represents a constant ##v##-surface. Therefore, for a particular value of ##u##, there exists a corresponding value of ##v##. So, we can conclude that ##u## and ##v## are functionally related.
But, how can I prove it mathematically?
 
Physics news on Phys.org
By 'functionally related', do you think that means that
- for any given value of ##u## there is a unique value of ##v## such that ##F(u,v)=0## and
- for any given value of ##v## there is a unique value of ##u## such that ##F(u,v)=0##?

If so, I'm not convinced by the above argument. I can imagine the set with ##u=1## as being two disconnected spheres, on one of which we have ##v=2## and on the other we have ##v=3##. Then there would be no unique ##v## value for ##u=1##.

I think a successful argument is going to have to bring the function ##F## into the argument, which the above does not.
 
In fact, I think the proposition may not even be true.

First, note that the 'necessary' part is easy to prove. Just express ##u## as a function of ##v## and then write out ##\nabla u(v)\times \nabla v## in coordinate form and we see that everything cancels.

I think the following may be a counterexample to the 'sufficient' claim though.
Define ##P=(1,0,0),Q=(-1,0,0)\in \mathbb{R}^3## and define ##u:\mathbb{R}\to\mathbb{R}## by
  • ##u(x)=\max(0,B(1-\|x-P\|))## if ##x^1\geq 0##; and
  • ##u(x)=-\max(0,B(1-\|x-Q\|))## if ##x^1< 0##
Where ##B:\mathbb{R}\to\mathbb{R}## is a bump function with support ##(0,1)## (to ensure ##u## and ##v## are differentiable).

Then define ##v=|u|##, and ##F(u,v)=u^2-v^2##.

Then for any ##v\in(0,1)## the set of ##(u,v)## satisfying ##F(u,v)=0## is a pair of congruent, non-intersecting spheres, of radius in ##(0,1)##, centred on ##P## and ##Q##. The value of ##v## is constant everywhere on both spheres, but the values of ##u## on the two spheres have opposite signs. So ##F(u,v)=0## does not generate a functional relationship between ##u## and ##v##.

The best we could do would be to prove something like the Implicit Function Theorem, that requires additional conditions such as continuous differentiability, and only concludes that a functional relationship exists locally, not necessarily globally.
 
Thanks, @andrewkirk . I was also puzzled by this exercise.

For the 'necessary' part, it is straightforward if one assumes that one of the partial derivatives of F never vanishes.
Without any assumption on F, no way this can be true (F≡0 as a silly counterexample for the 'necessary' part).
 
Samy_A said:
For the 'necessary' part, it is straightforward if one assumes that one of the partial derivatives of F never vanishes.
Without any assumption on F, no way this can be true (F≡0 as a silly counterexample for the 'necessary' part).
In the necessary case one needs to prove that:

(1) ##\nabla u\times\nabla v\not\equiv 0\Rightarrow u,v## are not functionally related by ##F##.

For a counterexample to that we would have to affirm the antecedent and deny the consequent, that is, we'd need:

(2) ##(\nabla u\times\nabla v\not\equiv 0)## and (##u,v## are functionally related by ##F##)

The case ##F\equiv 0## affirms the consequent of (1), and hence denies the second conjunct of (2), so (2) will not be true and the case cannot be a counterexample.

I've written out a componentwise proof of the necessary part, but then I realized I mustn't post it, as that would be giving away part of the answer wholesale.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K