- #1
spaghetti3451
- 1,344
- 34
In some Yang-Mills theory with gauge group ##G##, the gauge fields ##A_{\mu}^{a}## transform as
$$A_{\mu}^{a}
\to A_{\mu}^{a} \pm \partial_{\mu}\theta^{a} \pm f^{abc}A_{\mu}^{b}\theta^{c}$$
$$A_{\mu}^{a}
\to A_{\mu}^{a} \pm \left(\partial_{\mu}\theta^{a}-A_{\mu}^{b}f^{bac}\theta^{c}\right)$$
$$A_{\mu}^{a}
\to A_{\mu}^{a} \pm \left(\partial_{\mu}\theta^{a}-iA_{\mu}^{b}(T^{b}_{\text{adj}})^{ac}\theta^{c}\right),$$
where ##T^{a}_{\text{adj}}## is the adjoint representation of the gauge group ##G## and the gauge parameters ##\theta^{a}## are seen to transform in the adjoint representation of the gauge group ##G##.
------------------------------------------------------------------------------------------------------------------------------------------------
Why does this mean that the gauge fields ##A_{\mu}^{a}## transform in the adjoint representation?
Should the transformation of the gauge fields ##A_{\mu}^{a}## in the adjoint representation not be given by
$$A_{\mu}^{a} \to A_{\mu}^{a} \pm i\theta^{b}(T^{b}_{\text{adj}})^{ac}A_{\mu}^{c}?$$
$$A_{\mu}^{a}
\to A_{\mu}^{a} \pm \partial_{\mu}\theta^{a} \pm f^{abc}A_{\mu}^{b}\theta^{c}$$
$$A_{\mu}^{a}
\to A_{\mu}^{a} \pm \left(\partial_{\mu}\theta^{a}-A_{\mu}^{b}f^{bac}\theta^{c}\right)$$
$$A_{\mu}^{a}
\to A_{\mu}^{a} \pm \left(\partial_{\mu}\theta^{a}-iA_{\mu}^{b}(T^{b}_{\text{adj}})^{ac}\theta^{c}\right),$$
where ##T^{a}_{\text{adj}}## is the adjoint representation of the gauge group ##G## and the gauge parameters ##\theta^{a}## are seen to transform in the adjoint representation of the gauge group ##G##.
------------------------------------------------------------------------------------------------------------------------------------------------
Why does this mean that the gauge fields ##A_{\mu}^{a}## transform in the adjoint representation?
Should the transformation of the gauge fields ##A_{\mu}^{a}## in the adjoint representation not be given by
$$A_{\mu}^{a} \to A_{\mu}^{a} \pm i\theta^{b}(T^{b}_{\text{adj}})^{ac}A_{\mu}^{c}?$$