MHB GCD is same in a field and its superfield.

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Field Gcd
Click For Summary
In an extension field K of a field F, the monic greatest common divisor (GCD) of polynomials p(t) and q(t) in F[t] is identical to their monic GCD in K[t]. If p(t) and q(t) share a non-trivial common factor in K[t], it implies they must also have one in F[t], contradicting the assumption that they do not. This leads to the conclusion that any common factor in K must also exist in F. Therefore, the GCD remains unchanged when moving from F[t] to K[t]. The relationship between the GCDs in both fields highlights the consistency of polynomial factorization across field extensions.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $K$ be an extension field of a field $F$ and let $p(t),q(t)\in F[t]$. Show that the monic greatest common divisors of $p(t)$ and $q(t)$ in $F[t]$ is same as the monic greatest common divisor of $p(t)$ and $q(t)$ in $K$.
 
Mathematics news on Phys.org
Hint:

Let $p(t)$ and $q(t)$ have a non trivial common factor in $K[t]$. Assume that $p$ and $q$ don't have a non-trivial common factor in
$F[t]$. Then there exist $a,b\in F[t]$ such that $pa+qb=1$. But this contradicts the fact that $p$ and $q$ have a non-trivial common factor in $K[t]$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
538
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 24 ·
Replies
24
Views
830
  • · Replies 7 ·
Replies
7
Views
2K