unscientific
- 1,728
- 13
Homework Statement
Find the deflection of light given this metric, along null geodesics.
Homework Equations
The Attempt at a Solution
[/B]
Conserved quantities are:
e \equiv -\zeta \cdot u = \left( 1 - \frac{2GM}{c^2r} \right) c \frac{dt}{d\lambda}
l \equiv \eta \cdot u = r^2 \left( 1 - \frac{2GM}{c^2r} \right) \frac{d\phi}{d\lambda}For a null, "time-like" vector, ##u \cdot u = 0##:
- \left( 1 - \frac{2GM}{c^2r} \right)^{-1} e^2 + \left( 1 - \frac{2GM}{c^2r} \right) \left( \frac{dr}{d\lambda} \right)^2 + \frac{l^2}{r^2} \left(1 - \frac{2GM}{c^2r} \right)^{-1} = 0
Letting ##b = \frac{l}{e}##:
\frac{1}{b^2} = \frac{1}{l^2} \left( 1 -\frac{2GM}{c^2r} \right)^2 \left( \frac{dr}{d\lambda} \right)^2 + \frac{1}{r^2}
Does this mean that the effective potential ##W_{eff} = \frac{1}{r^2}##?
\frac{1}{b^2} = \frac{1}{l^2} \left( 1 -\frac{2GM}{c^2r} \right)^2 \left( \frac{dr}{d\lambda} \right)^2 + W_{eff}
To find deflection, we find ##\frac{d\phi}{dr}##:
\frac{d\phi}{dr} = \frac{\frac{d\phi}{d\lambda}}{ \frac{dr}{d\lambda}} = \frac{1}{r^2 \sqrt{ \frac{1}{b^2} - W_{eff} }}
\Delta \phi = 2 \int_{r_1}^{\infty} \frac{1}{r^2 \sqrt{ \frac{1}{b^2} - W_{eff} }} dr
The turning point is when ##W_eff(r_1) = \frac{1}{b^2}##, which means ##b=r_1##.
= 2 \int_1^{0} \frac{w^2}{b^2} \left( \frac{1}{b^2} - \frac{w^2}{b^2} \right)^{-\frac{1}{2}} \cdot \frac{-b}{w^2} dw
= 2 \int_0^1 \left(1 - w^2\right)^{-\frac{1}{2}} dw
= 2 \left( \frac{\pi}{2} \right)
\Delta \phi = \pi
So this means no deflection, which is strange.
Last edited: