MHB General Solution for $(x^2+y^2)x-y$ Differential Equation

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Find the general solution for:

$$\left(\left(x^2+y^2 \right)x-y \right)\,dx+\left(\left(x^2+y^2 \right)y+x \right)\,dy=0$$
 
Mathematics news on Phys.org
My solution

If you switch to polar coords $x = r \cos \theta , \; y = r \sin \theta$ the ODE becomes

$r dr + dt = 0$.

At this point the ODE is trivial.
 
Jester said:
My solution

If you switch to polar coords $x = r \cos \theta , \; y = r \sin \theta$ the ODE becomes

$r dr + dt = 0$.

At this point the ODE is trivial.

Brilliant! (Clapping)

For those who may not follow the substitution and subsequent result, I will elaborate, and also give my method here:

Jester suggests switching to polar coordinates:

$$x=r\cos(\theta)$$

$$y=r\sin(\theta)$$

and so we find:

$$x^2+y^2=r^2$$

$$\theta=\tan^{-1}\left(\frac{y}{x} \right)$$

$$dx=-r\sin(\theta)\,d\theta+\cos(\theta)\,dr$$

$$dy=r\cos(\theta)\,d\theta+\sin(\theta)\,dr$$

Now, substituting into the ODE, we get:

$$\left(r^3\cos(\theta)- r\sin(\theta) \right)\left(\cos(\theta)\,dr- r\sin(\theta)\,d\theta \right)+ \left(r^3\sin(\theta)+ r\cos(\theta) \right)\left(\sin(\theta)\,dr+ r\cos(\theta)\,d\theta \right)=0$$

Dividing through by $r$ and expanding, we find the first term is:

$$r^2\cos^2(\theta)\,dr-r^3\sin(\theta)\cos(\theta)-\sin(\theta)\cos(\theta)\,dr+r\sin^2(\theta)\,dt$$

and the second term is:

$$r^2\sin^2(\theta)\,dr+r^3\sin(\theta)\cos(\theta)+\sin(\theta)\cos(\theta)\,dr+r\cos^2(\theta)\,dt$$

And so their sum is (and applying the Pythagorean identity):

$$r^2\,dr+r\,d\theta=0$$

Divide through by $r$ to obtain:

$$r\,dr+d\theta=0$$

Integrating, we find:

$$r^2+2\theta=C$$

And back-substituting, we get the general solution:

$$x^2+y^2+2\tan^{-1}\left(\frac{y}{x} \right)=C$$

This is the method I used:

Beginning with:

$$\left(\left(x^2+y^2 \right)x-y \right)\,dx+\left(\left(x^2+y^2 \right)y+x \right)\,dy=0$$

$$\left(x^2+y^2 \right)x-y+\left(\left(x^2+y^2 \right)y+x \right)y'=0$$

Divide through by $$x^2+y^2$$ to get:

$$x+yy'+\frac{xy'-y}{x^2+y^2}=0$$

$$2x+2yy'+2\frac{1}{\left(\frac{y}{x} \right)^2+1}\cdot\frac{xy'-y}{x^2}=0$$

$$2x+2y\frac{dy}{dx}+2\frac{1}{\left(\frac{y}{x} \right)^2+1}\frac{d}{dx}\left(\frac{y}{x} \right)=0$$

Integrating with respect to $x$, we obtain the general solution:

$$x^2+y^2+2\tan^{-1}\left(\frac{y}{x} \right)=C$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
13
Views
2K
Replies
5
Views
1K
Replies
5
Views
2K
Replies
2
Views
1K
Back
Top