MHB General Solution for $(x^2+y^2)x-y$ Differential Equation

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Find the general solution for:

$$\left(\left(x^2+y^2 \right)x-y \right)\,dx+\left(\left(x^2+y^2 \right)y+x \right)\,dy=0$$
 
Mathematics news on Phys.org
My solution

If you switch to polar coords $x = r \cos \theta , \; y = r \sin \theta$ the ODE becomes

$r dr + dt = 0$.

At this point the ODE is trivial.
 
Jester said:
My solution

If you switch to polar coords $x = r \cos \theta , \; y = r \sin \theta$ the ODE becomes

$r dr + dt = 0$.

At this point the ODE is trivial.

Brilliant! (Clapping)

For those who may not follow the substitution and subsequent result, I will elaborate, and also give my method here:

Jester suggests switching to polar coordinates:

$$x=r\cos(\theta)$$

$$y=r\sin(\theta)$$

and so we find:

$$x^2+y^2=r^2$$

$$\theta=\tan^{-1}\left(\frac{y}{x} \right)$$

$$dx=-r\sin(\theta)\,d\theta+\cos(\theta)\,dr$$

$$dy=r\cos(\theta)\,d\theta+\sin(\theta)\,dr$$

Now, substituting into the ODE, we get:

$$\left(r^3\cos(\theta)- r\sin(\theta) \right)\left(\cos(\theta)\,dr- r\sin(\theta)\,d\theta \right)+ \left(r^3\sin(\theta)+ r\cos(\theta) \right)\left(\sin(\theta)\,dr+ r\cos(\theta)\,d\theta \right)=0$$

Dividing through by $r$ and expanding, we find the first term is:

$$r^2\cos^2(\theta)\,dr-r^3\sin(\theta)\cos(\theta)-\sin(\theta)\cos(\theta)\,dr+r\sin^2(\theta)\,dt$$

and the second term is:

$$r^2\sin^2(\theta)\,dr+r^3\sin(\theta)\cos(\theta)+\sin(\theta)\cos(\theta)\,dr+r\cos^2(\theta)\,dt$$

And so their sum is (and applying the Pythagorean identity):

$$r^2\,dr+r\,d\theta=0$$

Divide through by $r$ to obtain:

$$r\,dr+d\theta=0$$

Integrating, we find:

$$r^2+2\theta=C$$

And back-substituting, we get the general solution:

$$x^2+y^2+2\tan^{-1}\left(\frac{y}{x} \right)=C$$

This is the method I used:

Beginning with:

$$\left(\left(x^2+y^2 \right)x-y \right)\,dx+\left(\left(x^2+y^2 \right)y+x \right)\,dy=0$$

$$\left(x^2+y^2 \right)x-y+\left(\left(x^2+y^2 \right)y+x \right)y'=0$$

Divide through by $$x^2+y^2$$ to get:

$$x+yy'+\frac{xy'-y}{x^2+y^2}=0$$

$$2x+2yy'+2\frac{1}{\left(\frac{y}{x} \right)^2+1}\cdot\frac{xy'-y}{x^2}=0$$

$$2x+2y\frac{dy}{dx}+2\frac{1}{\left(\frac{y}{x} \right)^2+1}\frac{d}{dx}\left(\frac{y}{x} \right)=0$$

Integrating with respect to $x$, we obtain the general solution:

$$x^2+y^2+2\tan^{-1}\left(\frac{y}{x} \right)=C$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
13
Views
2K
Replies
5
Views
1K
Replies
5
Views
2K
Replies
2
Views
1K
Back
Top