MHB General Solution of Differential Equation System

Click For Summary
SUMMARY

The forum discussion focuses on finding the general solution to the system of differential equations defined by \( y'_1 = y_1 + 2y_2 \) and \( y'_2 = 3y_1 + 2y_2 \). The eigenvalues of the coefficient matrix \( A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \) are determined to be 4 and -1, which allows for diagonalization of the matrix. The general solution is derived as \( y_1(x) = Ae^{-x} + Be^{4x} \) and \( y_2(x) = -Ae^{-x} + \frac{3}{2}Be^{4x} \), confirming that both methods yield equivalent results.

PREREQUISITES
  • Understanding of differential equations and their systems
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of matrix diagonalization techniques
  • Proficiency in solving characteristic equations
NEXT STEPS
  • Study the process of diagonalizing matrices in linear algebra
  • Learn about the application of eigenvalues in solving differential equations
  • Explore the method of undetermined coefficients for solving non-homogeneous systems
  • Investigate the use of Laplace transforms in solving differential equations
USEFUL FOR

Mathematicians, engineering students, and anyone involved in solving systems of differential equations, particularly those interested in linear algebra and its applications in differential equations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{27.1}$
623
Find a general solution to the system of differential equations
$\begin{array}{llrr}\displaystyle
\textit{given}
&y'_1=\ \ y_1+2y_2\\
&y'_2=3y_1+2y_2\\
\textit{solving }
&A=\begin{pmatrix}1 &2\\3 &2\end{pmatrix}\\
\textit{eigensystem}.
&\begin{pmatrix}1-\lambda &2\\3 &2-\lambda\end{pmatrix}
=\lambda^2-3\lambda -4 = (\lambda-4)(\lambda+1) = 0 \\
&\lambda = 4,-1
\end{array}$

so far,,, not sure what is next!
 
Last edited:
Physics news on Phys.org
Okay, why did you find the eigenvalues of that matrix? What was your purpose?

For something as simple as this, I wouldn't use "matrices" at all. That is too "sophisticated" for me!

The two equations are
$y_1'= y_1+ 2y_2$ and
$y_2'= 3y_1+ 2y_2$.

Differentiate the first equation again:
$y_1''= y_1'+ 2y_2'$.
Substitue for $y_2'$ from the second equation:
$y_1''= y_1'+ 2(3y_1+ 2y_2)= 6y_1+ 4y_2$.
From the first equation $2y_2= y_1'- y_1$ so that is
$y_1''= y_1'+ 6y_1+ 2y_1'- 2y_1= 3y_1'- 4y_1$
$y_1''- 3y_1'- 4y_1= 0$.

That has "characteristic equation $r^2- 3r- 4= (r- 4)(r+ 1)= 0$ with "characteristic values" r= -1 and r= 4. Notice that those are the same as the "eigenvalue equation" and the "eigenvalues". The general solution is $y_1(x)= Ae^{-x}+ Be^{4x}$. You can get $y_2$ from the equation $2y_2= y_1'- y_1$:
$2y_2= -Ae^{-x}+ 4Be^{4x}- Ae^{-x}- Be^{4x}= -2Ae^{-x}+ 3Be^{4x}$.
 
Last edited:
Now, as to the solution using a matrix equation.

The problem is to solve $\frac{d\begin{pmatrix}y_1 \\ y_2\end{pmatrix}}{dx}= \begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}\begin{pmatrix}y_1 \\ y_2\end{pmatrix}$.

You have determined (correctly) that the eigenvalues of the coefficient matrix are 4 and -1. That means that the matrix can be "diagonalized". That is, there exists a matrix, P, such that $P\begin{pmatrix}1 & 2 \\ 3 & 2 \end{pmatrix}P^{-1}= \begin{pmatrix}4 & 0\\0 & -1\end{pmatrix}$.

And, of course, then. that $\begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}= P^{-1}\begin{pmatrix}4 & 0 \\ 0 & -1 \end{pmatrix}P$.

That "P" matrix is the matrix having the eigenvectors corresponding to eigenvalues 4 and -1 so we need to find those eigevectors.

If $\begin{pmatrix} a \\ b \end{pmatrix}$ is an eigen vector corresponding to eigenvalue 4, then we have $\begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}\begin{pmatrix}a \\ b\end{pmatrix}= \begin{pmatrix}a+ 2b \\ 3a+ 2b\end{pmatrix}= \begin{pmatrix}4a \\ 4b\end{pmatrix}$.

So a+ 2b= 4a and 3a+ 2b= 4b. Those reduce to -3a+ 2b= 0 and 3a- 2b= 0 which both reduce to 3a= 2b. There are infinitely many solutions because there are infinitely many eigenvectors corresponding to one eigenvalue (an entire subspace). We can take, as one solution, (a, b)= (2, 3).

If $\begin{pmatrix} a \\ b \end{pmatrix}$ is an eigenvector corresponding to eigenvalue -1, then we have $\begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}\begin{pmatrix}a \\ b\end{pmatrix}= \begin{pmatrix}a+ 2b \\ 3a+ 2b\end{pmatrix}= \begin{pmatrix}-a \\ -b\end{pmatrix}$.

So a+ 2b= -a and 3a+ 2b= -b. Those reduce to 2a+ 2b= 0 and 3a+ 3b= 0 which both reduce to a= -b. There are infinitely many solutions because there are infinitely many eigenvectors corresponding to one eigenvalue (an entire subspace). We can take, as one solution, (a, b)= (1, -1).

So $P= \begin{pmatrix}2 & 1 \\ 3 & -1\end{pmatrix}$ and $P^{-1}= \begin{pmatrix}\frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & -\frac{2}{5}\end{pmatrix}$

Now you can check that $P^{1}AP= \begin{pmatrix}\frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & -\frac{2}{5}\end{pmatrix}\begin{pmatrix}1 & 2 \\ 3 & 2 \end{pmatrix}\begin{pmatrix}2 & 1 \\ 3 & -1\end{pmatrix}= \begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}$

But then $P\begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}P^{-1}= \begin{pmatrix} 1 & 2 \\ 3 & 2\end{pmatrix}$ so we can write the differential equation $\frac{d\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}}{dx}= \begin{pmatrix}1 & 2 \\ 3 & 2 \end{pmatrix}\begin{pmatrix} y_1 \\ y_ 2 \end{pmatrix}$
as
$\frac{d\begin{pmatrix}y_1 \\ y_2 \end{pmatrix}}{dx}= P\begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}P^{-1}\begin{pmatrix} y_1 \\ y_2\end{pmatrix}$

Multiply both sides by $P^{-1}$, which is a constant and can be taken inside the derivative, to get $\frac{dP^{-1}\begin{pmatrix}y_1 \\ y_2\end{pmatrix}}{dx}= \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}P^{-1}\begin{pmatrix}y_1\\ y_2\end{pmatrix}$.

Let $Z= \begin{pmatrix} z_1 \\ z_2\end{pmatrix}= P^{-1}\begin{pmatrix}y_1 \\ y_2\end{pmatrix}$ and the differential equation becomes
$\frac{d\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}}{dx}= \begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.

So we have "uncoupled" the differential equations and can write $\frac{dz_1}{dx}= 4z_1$ and $\frac{dz_2}{dx}= -z_2$ which have solutions $z_1= C_1e^{4x}$ and $z_2= C_2e^{-x}$.

All that is left is to go back to $y_1$ and $y_2$. Since $\begin{pmatrix}z_1 \\ z_2\end{pmatrix}= P^{-1}\begin{pmatrix}y_1 \\ y_2 \end{pmatrix}$ we have that $\begin{pmatrix}y_1 \\ y_2 \end{pmatrix}= P\begin{pmatrix}z_1 \\ z_2\end{pmatrix}= \begin{pmatrix}2 & 1 \\ 3 & -1\end{pmatrix}\begin{pmatrix}C_1e^{4x} \\ C_2e^{-x}\end{pmatrix}= \begin{pmatrix}2C_1e^{4x}+ C_2e^{-x} \\ 3C_1e^{4x}- C_2e^{-x}\end{pmatrix}$.
 
Last edited:
I thought I would just add that that the two solutions I got in the previous two posts, $y_1= Ae^{-x}+ Be^{4x}$, $y_2= \frac{1}{2}y_1'- \frac{1}{2}y_1=$$ -\frac{A}{2}e^{-x}+ 2Be^{4x}- \frac{A}{2}e^{-x}- \frac{B}{2}e^4x=$$ -Ae^{-x}+ \frac{3}{2}Be^{4x}$ and $y_1= 2C_1e^{4x}+ C_2e^{-x}$, $y_2= 3C_1e^{4x}- C_2e^{-x}$, using two different methods, are actually the same.

That is, for any A and B there exist constants, $C_1$ and $C_2$ so that $Ae^{-x}+ Be^{4x}= 2C_1e^{4x}+ C_2e^{-x}$ and $Ae^{-x}+ \frac{3}{2}e^{4x}= 3C_1e^{4x}- C_2e^{-x}$.

If $y_1= Ae^{-x}+ Be^{4x}= 2C_1e^{4x}+ C_2e^{-x}$ for all x then, since $e^{-x}$ and $e^{4x}$ are "independent", We must have $A= C_2$ and $B= 2C_1$. Then $y_2= -Ae^{-x}+ \frac{3}{2}Be^{4x}= -C_2e^{-x}+ 3C_1e^{4x}$ just as we want!
 
Last edited:
yes that is very helpfull
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K