General Solution of Differential Equation System

Click For Summary

Discussion Overview

The discussion revolves around finding a general solution to a system of differential equations involving two functions, \(y_1\) and \(y_2\). Participants explore different methods, including matrix approaches and characteristic equations, to derive solutions and analyze their relationships.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant begins by presenting the system of differential equations and the associated matrix, seeking guidance on the next steps after finding the eigenvalues.
  • Another participant questions the necessity of using matrices for this problem and suggests a more straightforward method by differentiating the first equation and substituting the second equation to derive a characteristic equation.
  • A third participant elaborates on the matrix approach, confirming the eigenvalues and discussing the diagonalization of the matrix, leading to the need for finding eigenvectors.
  • This participant also provides a method to express the differential equations in a decoupled form, allowing for simpler solutions for \(z_1\) and \(z_2\) before transforming back to \(y_1\) and \(y_2\).
  • A fourth participant compares the solutions obtained from different methods, asserting that the results are equivalent under certain conditions, establishing a relationship between constants from both approaches.
  • A fifth participant expresses appreciation for the clarity and helpfulness of the explanations provided.

Areas of Agreement / Disagreement

Participants demonstrate a mix of agreement and disagreement regarding the methods used to solve the system. While some favor the matrix approach, others prefer a more direct method. The equivalence of the solutions derived from different methods is acknowledged, but the discussion remains open regarding the best approach.

Contextual Notes

Participants note that there are infinitely many eigenvectors corresponding to each eigenvalue, which leads to multiple valid solutions. The discussion also highlights the independence of the functions involved in the solutions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{27.1}$
623
Find a general solution to the system of differential equations
$\begin{array}{llrr}\displaystyle
\textit{given}
&y'_1=\ \ y_1+2y_2\\
&y'_2=3y_1+2y_2\\
\textit{solving }
&A=\begin{pmatrix}1 &2\\3 &2\end{pmatrix}\\
\textit{eigensystem}.
&\begin{pmatrix}1-\lambda &2\\3 &2-\lambda\end{pmatrix}
=\lambda^2-3\lambda -4 = (\lambda-4)(\lambda+1) = 0 \\
&\lambda = 4,-1
\end{array}$

so far,,, not sure what is next!
 
Last edited:
Physics news on Phys.org
Okay, why did you find the eigenvalues of that matrix? What was your purpose?

For something as simple as this, I wouldn't use "matrices" at all. That is too "sophisticated" for me!

The two equations are
$y_1'= y_1+ 2y_2$ and
$y_2'= 3y_1+ 2y_2$.

Differentiate the first equation again:
$y_1''= y_1'+ 2y_2'$.
Substitue for $y_2'$ from the second equation:
$y_1''= y_1'+ 2(3y_1+ 2y_2)= 6y_1+ 4y_2$.
From the first equation $2y_2= y_1'- y_1$ so that is
$y_1''= y_1'+ 6y_1+ 2y_1'- 2y_1= 3y_1'- 4y_1$
$y_1''- 3y_1'- 4y_1= 0$.

That has "characteristic equation $r^2- 3r- 4= (r- 4)(r+ 1)= 0$ with "characteristic values" r= -1 and r= 4. Notice that those are the same as the "eigenvalue equation" and the "eigenvalues". The general solution is $y_1(x)= Ae^{-x}+ Be^{4x}$. You can get $y_2$ from the equation $2y_2= y_1'- y_1$:
$2y_2= -Ae^{-x}+ 4Be^{4x}- Ae^{-x}- Be^{4x}= -2Ae^{-x}+ 3Be^{4x}$.
 
Last edited:
Now, as to the solution using a matrix equation.

The problem is to solve $\frac{d\begin{pmatrix}y_1 \\ y_2\end{pmatrix}}{dx}= \begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}\begin{pmatrix}y_1 \\ y_2\end{pmatrix}$.

You have determined (correctly) that the eigenvalues of the coefficient matrix are 4 and -1. That means that the matrix can be "diagonalized". That is, there exists a matrix, P, such that $P\begin{pmatrix}1 & 2 \\ 3 & 2 \end{pmatrix}P^{-1}= \begin{pmatrix}4 & 0\\0 & -1\end{pmatrix}$.

And, of course, then. that $\begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}= P^{-1}\begin{pmatrix}4 & 0 \\ 0 & -1 \end{pmatrix}P$.

That "P" matrix is the matrix having the eigenvectors corresponding to eigenvalues 4 and -1 so we need to find those eigevectors.

If $\begin{pmatrix} a \\ b \end{pmatrix}$ is an eigen vector corresponding to eigenvalue 4, then we have $\begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}\begin{pmatrix}a \\ b\end{pmatrix}= \begin{pmatrix}a+ 2b \\ 3a+ 2b\end{pmatrix}= \begin{pmatrix}4a \\ 4b\end{pmatrix}$.

So a+ 2b= 4a and 3a+ 2b= 4b. Those reduce to -3a+ 2b= 0 and 3a- 2b= 0 which both reduce to 3a= 2b. There are infinitely many solutions because there are infinitely many eigenvectors corresponding to one eigenvalue (an entire subspace). We can take, as one solution, (a, b)= (2, 3).

If $\begin{pmatrix} a \\ b \end{pmatrix}$ is an eigenvector corresponding to eigenvalue -1, then we have $\begin{pmatrix}1 & 2 \\ 3 & 2\end{pmatrix}\begin{pmatrix}a \\ b\end{pmatrix}= \begin{pmatrix}a+ 2b \\ 3a+ 2b\end{pmatrix}= \begin{pmatrix}-a \\ -b\end{pmatrix}$.

So a+ 2b= -a and 3a+ 2b= -b. Those reduce to 2a+ 2b= 0 and 3a+ 3b= 0 which both reduce to a= -b. There are infinitely many solutions because there are infinitely many eigenvectors corresponding to one eigenvalue (an entire subspace). We can take, as one solution, (a, b)= (1, -1).

So $P= \begin{pmatrix}2 & 1 \\ 3 & -1\end{pmatrix}$ and $P^{-1}= \begin{pmatrix}\frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & -\frac{2}{5}\end{pmatrix}$

Now you can check that $P^{1}AP= \begin{pmatrix}\frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & -\frac{2}{5}\end{pmatrix}\begin{pmatrix}1 & 2 \\ 3 & 2 \end{pmatrix}\begin{pmatrix}2 & 1 \\ 3 & -1\end{pmatrix}= \begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}$

But then $P\begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}P^{-1}= \begin{pmatrix} 1 & 2 \\ 3 & 2\end{pmatrix}$ so we can write the differential equation $\frac{d\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}}{dx}= \begin{pmatrix}1 & 2 \\ 3 & 2 \end{pmatrix}\begin{pmatrix} y_1 \\ y_ 2 \end{pmatrix}$
as
$\frac{d\begin{pmatrix}y_1 \\ y_2 \end{pmatrix}}{dx}= P\begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}P^{-1}\begin{pmatrix} y_1 \\ y_2\end{pmatrix}$

Multiply both sides by $P^{-1}$, which is a constant and can be taken inside the derivative, to get $\frac{dP^{-1}\begin{pmatrix}y_1 \\ y_2\end{pmatrix}}{dx}= \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}P^{-1}\begin{pmatrix}y_1\\ y_2\end{pmatrix}$.

Let $Z= \begin{pmatrix} z_1 \\ z_2\end{pmatrix}= P^{-1}\begin{pmatrix}y_1 \\ y_2\end{pmatrix}$ and the differential equation becomes
$\frac{d\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}}{dx}= \begin{pmatrix}4 & 0 \\ 0 & -1\end{pmatrix}\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.

So we have "uncoupled" the differential equations and can write $\frac{dz_1}{dx}= 4z_1$ and $\frac{dz_2}{dx}= -z_2$ which have solutions $z_1= C_1e^{4x}$ and $z_2= C_2e^{-x}$.

All that is left is to go back to $y_1$ and $y_2$. Since $\begin{pmatrix}z_1 \\ z_2\end{pmatrix}= P^{-1}\begin{pmatrix}y_1 \\ y_2 \end{pmatrix}$ we have that $\begin{pmatrix}y_1 \\ y_2 \end{pmatrix}= P\begin{pmatrix}z_1 \\ z_2\end{pmatrix}= \begin{pmatrix}2 & 1 \\ 3 & -1\end{pmatrix}\begin{pmatrix}C_1e^{4x} \\ C_2e^{-x}\end{pmatrix}= \begin{pmatrix}2C_1e^{4x}+ C_2e^{-x} \\ 3C_1e^{4x}- C_2e^{-x}\end{pmatrix}$.
 
Last edited:
I thought I would just add that that the two solutions I got in the previous two posts, $y_1= Ae^{-x}+ Be^{4x}$, $y_2= \frac{1}{2}y_1'- \frac{1}{2}y_1=$$ -\frac{A}{2}e^{-x}+ 2Be^{4x}- \frac{A}{2}e^{-x}- \frac{B}{2}e^4x=$$ -Ae^{-x}+ \frac{3}{2}Be^{4x}$ and $y_1= 2C_1e^{4x}+ C_2e^{-x}$, $y_2= 3C_1e^{4x}- C_2e^{-x}$, using two different methods, are actually the same.

That is, for any A and B there exist constants, $C_1$ and $C_2$ so that $Ae^{-x}+ Be^{4x}= 2C_1e^{4x}+ C_2e^{-x}$ and $Ae^{-x}+ \frac{3}{2}e^{4x}= 3C_1e^{4x}- C_2e^{-x}$.

If $y_1= Ae^{-x}+ Be^{4x}= 2C_1e^{4x}+ C_2e^{-x}$ for all x then, since $e^{-x}$ and $e^{4x}$ are "independent", We must have $A= C_2$ and $B= 2C_1$. Then $y_2= -Ae^{-x}+ \frac{3}{2}Be^{4x}= -C_2e^{-x}+ 3C_1e^{4x}$ just as we want!
 
Last edited:
yes that is very helpfull
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K