General topology: Countability and separation axioms

Click For Summary

Discussion Overview

The discussion revolves around the countability and separation axioms in general topology, specifically focusing on first-countable and second-countable spaces, as well as T1 and Hausdorff spaces. Participants seek to understand the intuition behind these concepts and their implications in topology.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses a need for help in grasping the intuition behind countability and separation axioms, despite understanding their formal definitions.
  • Another participant suggests that the axioms serve as generalizations, emphasizing the importance of minimal assumptions in proving theorems and the role of counterexamples.
  • It is noted that open sets in topology can be understood through their properties, such as unions and intersections, which relate to countability.
  • Separation properties are discussed, highlighting the challenges of defining separation without a metric and the necessity of distinguishing between various separation axioms.
  • Participants discuss the distinction between first-countable and second-countable spaces, with first countability being described as a local property and second countability as a global property.
  • One participant mentions that first countability can be seen as an abstraction from metric spaces, where convergent sequences play a crucial role.
  • Second countability is presented as a desirable property that can lead to metrizability in topological spaces.
  • Examples are provided, such as the Sorgenfrey line and uncountable sets with discrete topology, to illustrate the concepts of countability.
  • A later reply questions the intuitive understanding of closure in relation to sequences in a topological space, suggesting that this perspective may be more accessible than textbook definitions.

Areas of Agreement / Disagreement

Participants generally agree on the importance of understanding countability and separation axioms, but multiple competing views and interpretations of these concepts remain, particularly regarding their implications and intuitive understanding.

Contextual Notes

Some participants express uncertainty about the definitions and applications of first-countable and second-countable spaces, indicating that the discussion is still evolving and lacks definitive conclusions.

Who May Find This Useful

This discussion may be useful for students and researchers in mathematics, particularly those interested in topology and its foundational concepts.

beep300
Messages
3
Reaction score
0
I need some help understanding the countability and separation axioms in general topology, and how they give rise to first-countable and second-countable spaces, T1 spaces, Hausdorff spaces, etc.
I more or less get the formal definition, but I can't quite grasp the intuition behind them.

Any help and insights would be highly appreciated.
 
Physics news on Phys.org
I'm not sure if I have a satisfactory answer for you. I have always thought of this as simply a form of generalizations. The world we live in is a metric world and many things are covered by school math. We measure distances, open sets are simply spaces like intervals without the boundary, all is somehow dense and uncountable and so on. Not that there aren't enough weird topological facts in it despite of that, e.g. Cantor sets. However, if we start to state a topological theorem, it is for mathematicians somehow self evident to ask whether all this metric induced properties are really needed. Mathematicians love counterexamples and exceptions. So it is only natural to make the least instead of the most convenient assumptions when proving a theorem - and it's expanding its usage!

Since any union of open sets is open again but only a finite intersection is and vice versa for closed sets, and compactness is defined by the coverage with open sets, it's natural to speak of different countables, i.e. how many open sets it takes for something.

The same for separation properties. With a metric it's easy to see whether something is disjoint or not. Just measure it. But without a metric? What do we actually have to separate? Points, sets, which sets, points from sets and so on. Therefore the distinction between the various separation axioms is needed. It condenses theorems to a list of conditions which are really needed to proof a statement and therefore defines its applicability. When you deal with special topologies and all of a sudden you find out that you have only a ##T_1## space, you might get nervous and need to have a closer look on what you might take for granted and what not. Hausdorff is sometimes already a luxury.
 
  • Like
Likes   Reactions: beep300
fresh_42 said:
I'm not sure if I have a satisfactory answer for you. I have always thought of this as simply a form of generalizations. The world we live in is a metric world and many things are covered by school math. We measure distances, open sets are simply spaces like intervals without the boundary, all is somehow dense and uncountable and so on. Not that there aren't enough weird topological facts in it despite of that, e.g. Cantor sets. However, if we start to state a topological theorem, it is for mathematicians somehow self evident to ask whether all this metric induced properties are really needed. Mathematicians love counterexamples and exceptions. So it is only natural to make the least instead of the most convenient assumptions when proving a theorem - and it's expanding its usage!

Since any union of open sets is open again but only a finite intersection is and vice versa for closed sets, and compactness is defined by the coverage with open sets, it's natural to speak of different countables, i.e. how many open sets it takes for something.

The same for separation properties. With a metric it's easy to see whether something is disjoint or not. Just measure it. But without a metric? What do we actually have to separate? Points, sets, which sets, points from sets and so on. Therefore the distinction between the various separation axioms is needed. It condenses theorems to a list of conditions which are really needed to proof a statement and therefore defines its applicability. When you deal with special topologies and all of a sudden you find out that you have only a ##T_1## space, you might get nervous and need to have a closer look on what you might take for granted and what not. Hausdorff is sometimes already a luxury.

Thanks, I get it a lot better now.
There's one thing I don't get though: What's the distinction between first-countable and second-countable spaces? What's the intuition behind them?
 
beep300 said:
Thanks, I get it a lot better now.
There's one thing I don't get though: What's the distinction between first-countable and second-countable spaces? What's the intuition behind them?
Again, in the real world, i.e. ##ℝ## or in ##ℝ-##vector spaces everything is fine already: both are valid.
If you take an uncountable set with the discrete topology, then it's not second countable. Another example can be found in the Sorgenfrey line.
Basically first countability is a local property (Every point has ...) and second countability a global property (The topological space has ...).
 
  • Like
Likes   Reactions: beep300
beep300 said:
Thanks, I get it a lot better now.
There's one thing I don't get though: What's the distinction between first-countable and second-countable spaces? What's the intuition behind them?
The first countable property is basically an abstraction from metric spaces.
In any topological space, a point x is in the closure of a set A if there exists a sequence of elements of A converging to x. Also a function f between topological spaces preserves convergent sequences if it is continuous. In the presence of first countability both of the above become iff's.
Second countability is a good property to have because it can be used to prove that certain objects exist. In fact, regularity and second countability imply metrizability of a topological space, so here you have two of the properties in your list being used.
 
  • Like
Likes   Reactions: beep300
fresh_42 said:
Again, in the real world, i.e. ##ℝ## or in ##ℝ-##vector spaces everything is fine already: both are valid.

For finite-dimensional vector spaces that is. Many infinite-dimensional normed vector spaces are not second countable.
 
  • Like
Likes   Reactions: beep300
Thanks everyone, I get the first and second countability axioms better now.
I guess one shoud always look at how definitions from general topology apply to intuitive topological spaces (such as the metric space) to get a better grasp.

Cruz Martinez said:
The first countable property is basically an abstraction from metric spaces.
In any topological space, a point x is in the closure of a set A if there exists a sequence of elements of A converging to x. Also a function f between topological spaces preserves convergent sequences if it is continuous. In the presence of first countability both of the above become iff's.
Second countability is a good property to have because it can be used to prove that certain objects exist. In fact, regularity and second countability imply metrizability of a topological space, so here you have two of the properties in your list being used.

Could one state this property, in other words: that given some subset A, x is in its closure iff some sequence in A converges to x?
This iff condition seems far more intuitive than the original definition I was provided with in the textbook.
 
Last edited:

Similar threads

  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K