AxiomOfChoice
- 531
- 1
Mathematica has this command "Eigensystem[{m,a}]", which (to quote their documentation) "gives the generalized eigenvalues and eigenvectors of m with respect to a." I have never encountered this concept before, ever - that there can be eigenvectors of matrices with respect to other matrices. All I have ever come across is that \lambda is a generalized eigenvalue of A with generalized eigenvector \vec x if there exists some p \in \mathbb N such that (A-\lambda I)^p\vec x = 0.
Can someone please explain what it *means* to be a "generalized eigenvalue or eigenvector" of m with respect to a? Maybe it is related to the concept I mentioned above, but if so, I don't see it.
Can someone please explain what it *means* to be a "generalized eigenvalue or eigenvector" of m with respect to a? Maybe it is related to the concept I mentioned above, but if so, I don't see it.