I've done some searching and have thus far come up empty handed, so I'm hoping that someone here knows something that I don't.(adsbygoogle = window.adsbygoogle || []).push({});

I'm wondering if there has been any work on the enumeration of groups of order n (up to isomorphism); specifically, has anyone derived a generating function? Ideally someone would have one for all groups of order n, but I would imagine that there must at least be one for, say, finite abelian groups?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Generating function for groups of order n

Loading...

Similar Threads for Generating function groups | Date |
---|---|

Generalization of combinatorial generating functions? | Dec 31, 2014 |

Function to generate linearly independent vectors | Nov 8, 2012 |

Generating function | Dec 27, 2011 |

Generating function | Dec 22, 2011 |

Dirichlet Generating function and Poles. | Jul 13, 2007 |

**Physics Forums - The Fusion of Science and Community**