Given a Hamiltonian ##H##, with a spectrum of eigenvalues ##\lambda##, you can define(adsbygoogle = window.adsbygoogle || []).push({});

its zeta function as ##\zeta_H(s) = tr \frac{1}{H^s} = \sum_{\lambda}^{} \frac{1}{\lambda^s}##.

Subsequently, the log determinant of ##H## with a spectral parameter ##m^2## acts as a generating function for the zeta functions:

##ln(\frac{det(H+m^2)}{det(H)}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}m^{2n} \zeta_{H}(n)##.

I understand that the zeta function for the Hamiltonian is defined in analogy to the Riemann zeta function. However, I do not understand how the log determinant can be used as a generating function for the zeta functions.

What exactly is a generating function? Can somebody prove the second relation, please?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Generating function for the zeta function of the Hamiltonian

**Physics Forums | Science Articles, Homework Help, Discussion**