Generating level surface from 2 variable function

Painguy
Messages
118
Reaction score
0

Homework Statement


given f(x,y)=9/(x+y) find a level surface.

Homework Equations



The Attempt at a Solution


g(x,y,z)=f(x,y)-z=0?
g(x,y,z)=9/(x+y) -z=0?

That answer is wrong. Apparently i must have the following:

g(x,y,z)=z(x+y)=9

How do I solve problems like these?

Another example is to find a function f(x,y,z) whose level surface f=5 is the graph of the paraboloid
g(x,y)=-x^2 -y^2
 
Physics news on Phys.org
Painguy said:

Homework Statement


given f(x,y)=9/(x+y) find a level surface.

Homework Equations



The Attempt at a Solution


g(x,y,z)=f(x,y)-z=0?
g(x,y,z)=9/(x+y) -z=0?

That answer is wrong. Apparently i must have the following:

g(x,y,z)=z(x+y)=9

How do I solve problems like these?

Another example is to find a function f(x,y,z) whose level surface f=5 is the graph of the paraboloid
g(x,y)=-x^2 -y^2

You don't need any ##z## variable. To find level surface of a function ##f(x,y)## just plot the graphs of ##f(x,y)=C## for various constants ##C##. For a two variable problem like yours, they will be curves in the ##xy## plane, not surfaces.
 
Wouldn't that be generating level curves? I guess my terminology is bad. What i am asking is how do make f(x,y) into
F(x,y,z)
 
LCKurtz said:
You don't need any ##z## variable. To find level surface of a function ##f(x,y)## just plot the graphs of ##f(x,y)=C## for various constants ##C##. For a two variable problem like yours, they will be curves in the ##xy## plane, not surfaces.

Painguy said:
Wouldn't that be generating level curves? I guess my terminology is bad. What i am asking is how do make f(x,y) into
F(x,y,z)

Yes, if you have a function ##f(x,y)## you would talk about its level curves, not level surfaces as your original question stated. If you want to plot the graph of the function ##f(x,y)## you would to a 3D plot of the equation ##z=f(x,y)##, which is the same as ##z - f(x,y)=0## which is one of the level surfaces of ##F(x,y,z)=z-f(x,y)##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top