I Generic Form of Hermitian Matrix

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
  • Tags Tags
    Quantum physics
thatboi
Messages
130
Reaction score
20
I am reading the following thesis: https://www.kip.uni-heidelberg.de/Veroeffentlichungen/download/6387/pdf-6387.pdf
Specifically, I am confused about equation (2.5), where they give the generic form of the matrix ##\mathcal{M}## due to the Hermiticity of ##\mathcal{H}## and the commutation relation (2.4). I am confused about why the bottom right element is ##\bar{A}##. I'm sure this is related to the commutation relation but I'm confused as to how they enter into the picture. ##\mathcal{H}^{\dagger} = (\mathcal{M}a)^{\dagger}(a^{\dagger})^{\dagger} = a^{\dagger}\mathcal{M}^{\dagger}a## so where do the commutation relations come from or what step did I skip?
 
Physics news on Phys.org
Yes, something is missing, because I can take ##N=1## and ##M=\begin{pmatrix} 0&1\\1&2 \end{pmatrix}##, which make ##H=a^\dagger a^\dagger + aa+2aa^\dagger##, which is hermitian.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top