I Generic Form of Hermitian Matrix

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
  • Tags Tags
    Quantum physics
thatboi
Messages
130
Reaction score
20
I am reading the following thesis: https://www.kip.uni-heidelberg.de/Veroeffentlichungen/download/6387/pdf-6387.pdf
Specifically, I am confused about equation (2.5), where they give the generic form of the matrix ##\mathcal{M}## due to the Hermiticity of ##\mathcal{H}## and the commutation relation (2.4). I am confused about why the bottom right element is ##\bar{A}##. I'm sure this is related to the commutation relation but I'm confused as to how they enter into the picture. ##\mathcal{H}^{\dagger} = (\mathcal{M}a)^{\dagger}(a^{\dagger})^{\dagger} = a^{\dagger}\mathcal{M}^{\dagger}a## so where do the commutation relations come from or what step did I skip?
 
Physics news on Phys.org
Yes, something is missing, because I can take ##N=1## and ##M=\begin{pmatrix} 0&1\\1&2 \end{pmatrix}##, which make ##H=a^\dagger a^\dagger + aa+2aa^\dagger##, which is hermitian.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top