Geodesics in Schwarzschild: Reparametrizing the Equations

Click For Summary

Discussion Overview

The discussion revolves around the reparametrization of geodesic equations in the context of the Schwarzschild solution, specifically focusing on null and timelike trajectories. Participants explore the implications of setting the parameter epsilon to 0 for null trajectories and seek expressions for the relationship between proper time and the affine parameter.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant derives a system of first-order geodesic equations based on the Schwarzschild metric and discusses the implications of setting epsilon to 0 for null trajectories.
  • Another participant notes that the derivative with respect to phi is ill-defined for radial trajectories, suggesting that such cases cannot be modeled using the proposed approach.
  • There is a discussion about whether to use the affine parameter tau or lambda for numerical integration, with suggestions to maintain the original lambda system and define the equations accordingly.
  • A participant proposes an expression for the evolution of proper time concerning the trajectory, questioning how it behaves as the trajectory approaches the mass M.
  • It is noted that Carroll uses lambda as a general affine parameter, and fixing epsilon to 1 aligns the affine parameter with proper time for timelike paths.

Areas of Agreement / Disagreement

Participants express differing views on the treatment of radial trajectories and the choice of affine parameter, indicating that multiple competing approaches remain without a clear consensus.

Contextual Notes

Some participants highlight the limitations of the approach when dealing with radial trajectories, where angular displacement is zero, leading to potential issues in parameterization.

Hunterc2429
Messages
3
Reaction score
0
TL;DR
Hi all, I am currently working through Sean Carroll's "An Introduction to General Relativity," in the process, I am trying to numerically integrate and plot test particles using the geodesic equations provided. However, I want to parameterize them such that the azimuthal angle is the independent variable, but I am unsure of my results.
Hi all,

I am working through Sean Carroll's Textbook, particularly Chapter 5 regarding the Schwarzschild Solution. In this chapter, Energy and Angular Momentum are defined as follows:

$$
\begin{align}
E &= (1-\frac{2GM}{r})\frac{dt}{d\lambda} \Rightarrow \frac{dt}{d\lambda} = (1- \frac{2GM}{r})^{-1}E \\
L &= r^2 \frac{d\phi}{d\lambda} \Rightarrow \frac{d\phi}{d\lambda} = \frac{L}{r^2}
\end{align}
$$

Upon substitution into the four-norm ##\epsilon = g_{\mu \nu}\frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda}## one can derive that,

$$(\frac{dr}{d\lambda})^2 = E^2 - (1- \frac{2GM}{r})(\frac{L^2}{r^2} + \epsilon)$$

Using the chain rule,

$$
\Rightarrow \frac{d}{d\lambda}(\frac{dr}{d\lambda})^2 = \frac{d}{d\lambda}(E^2 - (1-\frac{2M}{r})(\frac{L^2}{r^2}+\epsilon) ) \\
\Rightarrow 2\frac{dr}{d\lambda}\frac{d^2r}{d\lambda} = -\frac{2L^2}{r^3}\frac{dr}{d\lambda}+\frac{6ML^2}{r^4}\frac{dr}{d\lambda} + \frac{2M\epsilon}{r^2}\frac{dr}{d\lambda}
$$

And so, we have the following system of first-order geodesic equations,

1. ##\frac{dt}{d\lambda} = (1-\frac{2M}{r})^{-1}E##
2. ##\frac{d\phi}{d\lambda} = \frac{L}{r^2}##
3. ##\frac{dr}{d\lambda}=u##
4. ##\frac{du}{d\lambda} = -\frac{L^2}{r^3}+\frac{3ML^2}{r^4}+\frac{M\epsilon}{r^2}##

Then, by the chain rule, I can divide each of these equations by (2.) to find,

1. ##\frac{dt}{d\phi} = \frac{dt}{d\lambda}\frac{d\lambda}{d\phi}= (1-\frac{2M}{r})^{-1}E \cdot \frac{r^2}{L}##
2. ##\frac{dr}{d\phi}=\frac{dr}{d\lambda}\frac{d\lambda}{d\phi} = u \cdot \frac{r^2}{L} ##
3. ##\frac{du}{d\phi} = \frac{du}{d\lambda}\frac{d\lambda}{d\phi} = (-\frac{L^2}{r^3}+\frac{3ML^2}{r^4}+\frac{M\epsilon}{r^2}) \cdot \frac{r^2}{L}##

Now, what I am having trouble with is,

1. Is setting epsilon=0 for null trajectories enough of a modification to the system above to describe null trajectories?
2. How can I find an expression for ##\frac{d\tau}{d\phi}##? It is my understanding that if a particle is timelike then ##(\frac{d\tau}{d\lambda})^2 = -g_{\mu \nu}\frac{dx^{\nu}}{d\lambda}\frac{dx^{\nu}}{d\lambda}=1## so then ##\frac{d\tau}{d\lambda}=1## and ##\frac{d\tau}{d\phi} = \frac{r^2}{L}##

So then, if timelike, ## \epsilon =1 ##

1. ##\frac{dt}{d\phi} = \frac{dt}{d\lambda}\frac{d\lambda}{d\phi}= (1-\frac{2M}{r})^{-1}E \cdot \frac{r^2}{L}##
2. ##\frac{dr}{d\phi}=\frac{dr}{d\lambda}\frac{d\lambda}{d\phi} = u \cdot \frac{r^2}{L} ##
3. ##\frac{du}{d\phi} = \frac{du}{d\lambda}\frac{d\lambda}{d\phi} = (-\frac{L^2}{r^3}+\frac{3ML^2}{r^4}+\frac{M}{r^2}) \cdot \frac{r^2}{L}##
4. ##\frac{d\tau}{d\phi} = \frac{r^2}{L}##

So then, if lightlike, ## \epsilon=0 ##

1. ##\frac{dt}{d\phi} = \frac{dt}{d\lambda}\frac{d\lambda}{d\phi}= (1-\frac{2M}{r})^{-1}E \cdot \frac{r^2}{L}##
2. ##\frac{dr}{d\phi}=\frac{dr}{d\lambda}\frac{d\lambda}{d\phi} = u \cdot \frac{r^2}{L} ##
3. ##\frac{du}{d\phi} = \frac{du}{d\lambda}\frac{d\lambda}{d\phi} = (-\frac{L^2}{r^3}+\frac{3ML^2}{r^4}) \cdot \frac{r^2}{L}##


Any advice would be greatly appreciated!
 
Last edited:
Physics news on Phys.org
Haven't checked the maths on detail but the steps seems correct to me.

Note that ##d/d\phi## is ill-defined for radial trajectories, so they cannot be modelled in this approach.
 
@Ibix Is this because motion is purely in the r-direction for a radial trajectory with no angular displacement? so then ## \frac{d\phi}{d\lambda}=0 ## and we are effectively dividing by zero? How else might I write my system of equations, then? In the timelike case, use affine parameter ## \tau ##; in the lightlike case, use ## \lambda ##? Or would it be better to simply use ## \lambda ## as my affine parameter? I am trying to write code for numerical integration I could simply define the system as the original lambda system before dividing by ## \frac{d\phi}{d\lambda} ## and just now have another equation ##\frac{d\tau}{d\lambda} = \pm \sqrt{E^2 - (1- \frac{2GM}{r})(\frac{L^2}{r^2}+\epsilon)}##

Python:
def geodesic_system(lam, y, GM, c, L, E, epsilon=1):
    tau, t, p, r, phi = y
    
    dt_dlambda = E / (1 - 2 * GM / r)
    dr_dlambda = p
    dp_dlambda = -L**2 / r**3 + 3 * GM * L**2 / r**4 + GM * epsilon / r**2
    dphi_dlambda = L / r**2
    
    
    if epsilon == 1:
        argument = (1 - 2 * GM / r) * dt_dlambda**2 + dr_dlambda**2 / (1 - 2 * GM / r) + r**2 * dphi_dlambda**2
        
        if argument < 0:
            argument = 0  
        dtau_dlambda = np.sqrt(argument)
    else:
        dtau_dlambda = 0  # Proper time does not evolve for null geodesics
    
    return [dtau_dlambda, dt_dlambda, dp_dlambda, dr_dlambda, dphi_dlambda]
 
Last edited:
Hunterc2429 said:
Is this because motion is purely in the r-direction for a radial trajectory with no angular displacement?
Yes. You can't parameterise a path by something that doesn't change.
Hunterc2429 said:
How else might I write my system of equations, then?
I'd just use ##\lambda##, and just decide at the output stage if I want to print ##\tau## instead because it's a timelike path.
Hunterc2429 said:
I am trying to write code for numerical integration
It's generally best to use the proper time or the affine parameter because you know it always changes along the path. You could use the Schwarzschild time coordinate if you really wanted, but that rules out analysing some spatial geodesics (those that travel along constant time surfaces), and rules out horizon crossings (but you've done that anyway by picking Schwarzschild coordinates).
 
  • Like
Likes   Reactions: PeterDonis and Hunterc2429
@Ibix, Last question for you: how can I get an expression for ##\frac{d\tau}{d\lambda}## that evolves concerning the trajectory? Because of how I have defined it, I am sure that ##\frac{d\tau}{d\lambda} = 1## or 0 for null geodesics. So, then, proper time evolves linearly with lambda. So I have defined #\frac{d\tau}{d\lambda} # in the following way, where ##p = \frac{dr}{d\lambda}##,

$$
(\frac{d\tau}{d\lambda})^2 = \frac{E^2}{(1- \frac{2GM}{r})} - \frac{p^2}{(1-\frac{2GM}{r})}- \frac{L^2}{r^2}
$$
and
$$
\frac{d\tau}{d\lambda} = \sqrt{ \frac{E^2}{(1- \frac{2GM}{r})} - \frac{p^2}{(1-\frac{2GM}{r})}- \frac{L^2}{r^2}}
$$

So that I can show how proper time evolves as the trajectory nears the mass M, also I am curious about trajectories where proper time evolves with the radius so I have chosen the positive root.

[Mentors' note: edited to fix a Latex formatting error]
 
Last edited by a moderator:
Generally, Carroll uses ##\lambda## to mean any affine parameter. Picking ##\epsilon=1## fixes the affine parameter to be the proper time, ##\tau##, so ##\tau=\lambda## for timelike paths.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
835
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K