I Geodesics using 2 Variables: Time & Radius from Mass

kairama15
Messages
31
Reaction score
0
TL;DR Summary
Any object will move through spacetime along its geodesic. Since mass bends spacetime, an object initially at rest near the mass will move towards the mass along a geodesic. It would be useful to simplify the multidimensional nature of general relativity to help visualize how mass bends spacetime. We could use just 3 dimensions rather than all dimensions involved to help visualize how an object would move towards another heavy mass.
*Moving this thread from 'General Math Forum' to 'General Relativity Forum' in order to generate more discussion.*

Any object will move through spacetime along its geodesic. Since mass bends spacetime, an object initially at rest near the mass will move towards the mass along a geodesic. It would be useful to simplify the multidimensional nature of general relativity to help visualize how mass bends spacetime. We could use just 3 dimensions rather than all dimensions involved to help visualize how an object would move towards another heavy mass (as long as we only care about time, the distance from the heavy mass, and ignore the other angular components that aren't needed in a simple model).

There is a video on Youtube called Beauty of Geodesics

that visualizes how objects move along geodesics on a curved 3 dimensional surface. It may be very useful to visualize the 3 dimensional surface of the Schwarzschild metric like this to "see" how an object moves through curved spacetime generated by a mass.

A strategy would be to turn the line element of spacetime into a 3d graph. There are line elements of 3 dimensional surfaces like:

For the graph of a sphere: z=sqrt(r^2-x^2-y^2), there is a line element: ds^2=dr^2+r^2*dΘ+r^2*sinΘ*dΦ.

For the graph z=x+y, there is a line element: ds^2=dx^2+dy^2+dz^2. It's just the line element for a plane.

Is there a similar 3d graph that is associated with the Schwartzchild metric? The Schwartzchild metric is dτ^2= (1-2*G*M/(c^2*r))*dt^2 - (1-2*G*M/(c^2*r))*dr^2/c^2 (assuming dΘ and dΦ are not changing and are equal to 0). The 3d graph would be a function of r and t and its third coordinate would be τ.

...So instead of some 3d graph like z=x+y, we would get some 3d graph τ as a function of r and t. As long as we keep dΘ and dΦ equal to 0, the graph would be 3 dimensional.

So if there are 3d graphs associated with line elements for planes and spheres, is there a 3d graph associated with the Schwartzchild line element for space time τ? It would be quite beautiful to try to program a geodesic video of how a mass moves along a 3d surface of curved spacetime. I envision a stationary object next to the mass moving initially only along the t dimension, then slowly curving towards the mass as its geodesic along t and r changes.

We can't easily visualize how something moves through spacetime in 5 dimensions (spacetime,r,t,theta,phi), but we can visualize how something moves through spacetime in 3 dimensions (spacetime,r,t). Like an object initially at rest (r=ro) and only traveling along the time coordinate; and allowing the spacetime to curve it towards r=0 as r and t change on a 3 dimensional graph's geodesic.
 
Physics news on Phys.org
kairama15 said:
So if there are 3d graphs associated with line elements for planes and spheres, is there a 3d graph associated with the Schwartzchild line element for space time τ? It would be quite beautiful to try to program a geodesic video of how a mass moves along a 3d surface of curved spacetime. I envision a stationary object next to the mass moving initially only along the t dimension, then slowly curving towards the mass as its geodesic along t and r changes.
Here is a video for the local approximation (radial)space + time:

On the global scale spacetime is intrinsically curved (as shown below). It cannot be rolled out like the cone in the video above, which approximates just a small radial range:

gravity_global_small-png.png


The red path is the geodesic world-line of a free falling object, that oscillates through a tunnel through a spherical mass. Note that the geodesic always deviates towards the "more stretched" proper time, or towards greater gravitational time dilation. Gravitational time dilation has an extreme point at the center of the mass (gradient is zero), so there is no gravity there (but the maximal gravitational time dilation).

There is an interactive Flash version of that here (note that Flash is blocked by default by modern browsers):
http://www.adamtoons.de/physics/relativity.html

See also:
http://www.relativitet.se/Webtheses/tes.pdf
And other papers by Jonsson:
http://www.relativitet.se/articles.html
 
  • Like
Likes Nugatory
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Back
Top