I Geodesics using 2 Variables: Time & Radius from Mass

kairama15
Messages
31
Reaction score
0
TL;DR Summary
Any object will move through spacetime along its geodesic. Since mass bends spacetime, an object initially at rest near the mass will move towards the mass along a geodesic. It would be useful to simplify the multidimensional nature of general relativity to help visualize how mass bends spacetime. We could use just 3 dimensions rather than all dimensions involved to help visualize how an object would move towards another heavy mass.
*Moving this thread from 'General Math Forum' to 'General Relativity Forum' in order to generate more discussion.*

Any object will move through spacetime along its geodesic. Since mass bends spacetime, an object initially at rest near the mass will move towards the mass along a geodesic. It would be useful to simplify the multidimensional nature of general relativity to help visualize how mass bends spacetime. We could use just 3 dimensions rather than all dimensions involved to help visualize how an object would move towards another heavy mass (as long as we only care about time, the distance from the heavy mass, and ignore the other angular components that aren't needed in a simple model).

There is a video on Youtube called Beauty of Geodesics

that visualizes how objects move along geodesics on a curved 3 dimensional surface. It may be very useful to visualize the 3 dimensional surface of the Schwarzschild metric like this to "see" how an object moves through curved spacetime generated by a mass.

A strategy would be to turn the line element of spacetime into a 3d graph. There are line elements of 3 dimensional surfaces like:

For the graph of a sphere: z=sqrt(r^2-x^2-y^2), there is a line element: ds^2=dr^2+r^2*dΘ+r^2*sinΘ*dΦ.

For the graph z=x+y, there is a line element: ds^2=dx^2+dy^2+dz^2. It's just the line element for a plane.

Is there a similar 3d graph that is associated with the Schwartzchild metric? The Schwartzchild metric is dτ^2= (1-2*G*M/(c^2*r))*dt^2 - (1-2*G*M/(c^2*r))*dr^2/c^2 (assuming dΘ and dΦ are not changing and are equal to 0). The 3d graph would be a function of r and t and its third coordinate would be τ.

...So instead of some 3d graph like z=x+y, we would get some 3d graph τ as a function of r and t. As long as we keep dΘ and dΦ equal to 0, the graph would be 3 dimensional.

So if there are 3d graphs associated with line elements for planes and spheres, is there a 3d graph associated with the Schwartzchild line element for space time τ? It would be quite beautiful to try to program a geodesic video of how a mass moves along a 3d surface of curved spacetime. I envision a stationary object next to the mass moving initially only along the t dimension, then slowly curving towards the mass as its geodesic along t and r changes.

We can't easily visualize how something moves through spacetime in 5 dimensions (spacetime,r,t,theta,phi), but we can visualize how something moves through spacetime in 3 dimensions (spacetime,r,t). Like an object initially at rest (r=ro) and only traveling along the time coordinate; and allowing the spacetime to curve it towards r=0 as r and t change on a 3 dimensional graph's geodesic.
 
Physics news on Phys.org
kairama15 said:
So if there are 3d graphs associated with line elements for planes and spheres, is there a 3d graph associated with the Schwartzchild line element for space time τ? It would be quite beautiful to try to program a geodesic video of how a mass moves along a 3d surface of curved spacetime. I envision a stationary object next to the mass moving initially only along the t dimension, then slowly curving towards the mass as its geodesic along t and r changes.
Here is a video for the local approximation (radial)space + time:

On the global scale spacetime is intrinsically curved (as shown below). It cannot be rolled out like the cone in the video above, which approximates just a small radial range:

gravity_global_small-png.png


The red path is the geodesic world-line of a free falling object, that oscillates through a tunnel through a spherical mass. Note that the geodesic always deviates towards the "more stretched" proper time, or towards greater gravitational time dilation. Gravitational time dilation has an extreme point at the center of the mass (gradient is zero), so there is no gravity there (but the maximal gravitational time dilation).

There is an interactive Flash version of that here (note that Flash is blocked by default by modern browsers):
http://www.adamtoons.de/physics/relativity.html

See also:
http://www.relativitet.se/Webtheses/tes.pdf
And other papers by Jonsson:
http://www.relativitet.se/articles.html
 
  • Like
Likes Nugatory
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...

Similar threads

Back
Top