MHB Geom Ch: Prove $AB=x^3$ Given $\triangle ABC$ & $\triangle AEF$

AI Thread Summary
In the given geometric configuration, triangles ABC and AEF share several key properties, including a midpoint E on segment AB and collinearity of points A, G, and F. The intersection of lines BG and EF at point C, along with the equal lengths CE, AC, AE, and FG, establishes a relationship between the segments. The problem requires proving that if AG equals x, then the length of AB must equal x cubed. This geometric proof hinges on the established conditions and relationships between the points and segments in the triangles. The conclusion is that the relationship AB = x^3 holds true under the specified conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The $\triangle ABC$ and $\triangle AEF$ are in the same plane. Between them, the following conditions hold:

1. The midpoint of $AB$ is $E$.
2. The points $A,\,G$ and $F$ are on the same line.
3. There is a point $C$ at which $BG$ and $EF$ intersect.
4. $CE=1$ and $AC=AE=FG$.

Prove that if $AG=x$, then $AB=x^3$.
 
Mathematics news on Phys.org
https://www.hostpic.org/images/2107161424150121.png
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top