MHB Geometric Puzzle: Find P & Q in R2 Square

  • Thread starter Thread starter HallsofIvy
  • Start date Start date
  • Tags Tags
    Geometric Puzzle
AI Thread Summary
The discussion focuses on finding two disjoint, connected sets P and Q within a square defined by vertices (1, 1), (1, -1), (-1, -1), and (-1, 1). Set P includes the points (1, 1) and (-1, -1), while set Q includes (-1, 1) and (1, -1). The sets are constructed using subsets of the square that are connected but not path-connected, specifically defined by regions around the sine function. The proposed sets P and Q satisfy all conditions, ensuring they are disjoint and contained within the square. The argument demonstrates that both sets maintain their connectedness through topological properties rather than geometric paths.
HallsofIvy
Science Advisor
Homework Helper
Messages
42,895
Reaction score
984
Find two sets P and Q satisfying
I) P and Q are completely contained in the square, in R2, with vertices (1, 1), (1, -1), (-1, -1), and (-1, 1).
II) P contains the ponts (1, 1) and (-1, -1) while Q contains (-1, 1) and (1, -1).
III) P and Q are disjoint.
IV) P and Q are both connected sets.
 
Mathematics news on Phys.org
HallsofIvy said:
Find two sets P and Q satisfying
I) P and Q are completely contained in the square, in R2, with vertices (1, 1), (1, -1), (-1, -1), and (-1, 1).
II) P contains the ponts (1, 1) and (-1, -1) while Q contains (-1, 1) and (1, -1).
III) P and Q are disjoint.
IV) P and Q are both connected sets.
P and Q cannot be path-connected, because any continuous path from (1, 1) to (-1, -1) would have to intersect one from (-1, 1) to (1, -1). So the problem has to be about the topological definition of connectedness rather than the geometric notion of path-connectedness, and we must look for sets that are connected but not path-connected.
[sp]Let $X = [-1,1]\times[-1,1]$, and define subsets of $X$ by $$UR = \{(x,y)\in X : x>0,\ y > \tfrac12\sin\tfrac1x\},$$ $$LR = \{(x,y)\in X : x>0,\ y < \tfrac12\sin\tfrac1x\},$$ $$UL = \{(x,y)\in X : x<0,\ y > \tfrac12\sin\tfrac1x\},$$ $$LL = \{(x,y)\in X : x<0,\ y < \tfrac12\sin\tfrac1x\},$$ $$UA = \{(x,y)\in X : x=0,\ y > 0\},$$ $$LA = \{(x,y)\in X : x=0,\ y < 0\},$$ (the names of the sets are meant to indicate Upper Right, Lower Left, etc., and A denotes $y$-Axis). These sets are all disjoint, and each of them is connected.

Let $P = UR\cup LL\cup UA$, $Q = LR\cup UL\cup LA.$ Then properties I), II), III) certainly hold. To see that IV) also holds, suppose that $U$ and $V$ are disjoint open sets with $P\subset U\cup V$. Since the three component parts of $P$ are connected, each of them must lie entirely within one of the sets $U$, $V$. In particular, $UA\subset U$ say. Then $U$, being open, must contain a neighbourhood extending each side of the positive $y$-axis and therefore contains points in both $UR$ and $LL$. But those sets are both connected, and it follows that $U$ must contain the whole of $P$, so that $V$ is disjoint from $P$. That shows that $P$ is connected; and a similar argument shows that so also is $Q$.[/sp]
 

Attachments

  • crossing_topologist_curves_HoI.png
    crossing_topologist_curves_HoI.png
    6.5 KB · Views: 99
  • crossing_topologist_curves_ILS.png
    crossing_topologist_curves_ILS.png
    6.4 KB · Views: 98
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
4
Views
1K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
4
Views
901
Replies
3
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Back
Top