Geometry Challenge: Prove $\angle ADE=\angle BDC$ in Convex Quadrilateral $ADBE$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Geometry
Click For Summary
SUMMARY

In convex quadrilateral $ADBE$, with point $C$ inside triangle $ABE$, it is established that $\angle EAD + \angle CAB = \angle EBD + \angle CBA = 180^{\circ}$. This leads to the conclusion that $\angle ADE = \angle BDC$. The discussion highlights the importance of visual representation in geometric proofs, particularly through the use of TiKZ for creating diagrams that enhance understanding and presentation quality.

PREREQUISITES
  • Understanding of basic geometric concepts, including angles and triangles.
  • Familiarity with convex quadrilaterals and their properties.
  • Knowledge of the TiKZ package for LaTeX to create geometric diagrams.
  • Ability to perform angle calculations and apply the properties of supplementary angles.
NEXT STEPS
  • Explore advanced geometric proofs involving cyclic quadrilaterals.
  • Learn more about the properties of angles in polygons, specifically in convex shapes.
  • Study the use of TiKZ for creating complex geometric figures in LaTeX.
  • Investigate the relationship between angles and triangles in Euclidean geometry.
USEFUL FOR

Mathematicians, geometry enthusiasts, educators, and students looking to deepen their understanding of geometric proofs and enhance their diagramming skills using TiKZ.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In convex quadrilateral $ADBE$, there is a point $C$ within $\triangle ABE$ such that $\angle EAD+\angle CAB=\angle EBD+\angle CBA=180^{\circ}$.

Prove that $\angle ADE=\angle BDC$.
 
Mathematics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\coordinate[label=left: E] (E) at (-3,0);
\coordinate[label=below: D] (D) at (1.2,-2.75);
\coordinate[label=below: A] (A) at (-1,.-2.828);
\coordinate[label=right: F] (F) at (2.9,-0.768);
\coordinate[label=above: B] (B) at (-1,-0.26);
\coordinate[label=above: C] (C) at (-2,-1.1);
\draw (A) -- (E);
\draw (A) -- (D);
\draw (F) -- (D);
\draw (E) -- (F);
\draw (A) -- (B);
\draw (A) -- (F);
\draw (E) -- (D);
\draw (B) -- (D);
\draw [dashed] (C) -- (D);
\draw [dashed] (C) -- (B);
\draw [dashed] (C) -- (A);
[/TIKZ]

Let F be the second intersection of the circumcircle of $\triangle EAD$ and line $EB$. Then $\angle DBF=180^{\circ}-\angle EBD=\angle CBA$. Moreover,

$\begin{align*}\angle BDF&=180^{\circ}-\angle AEB-\angle ADB\\&=180^{\circ}-(360^{\circ}-\angle EAD-\angle EBD)\\&= 180^{\circ}-(\angle CAB+\angle CBA)\\&=\angle BCA\end{align*}$

These two relations give $\angle BDF \simeq \triangle BCA$.

So $\dfrac{BD}{BF}=\dfrac{BC}{BA}$ Together with $\angle DBF=\angle CBA$, we have $\triangle BDC \simeq \triangle BFA$.

This results in $\angle ADE=\angle AFE=\angle BFA=\angle BDC$. (Q.E.D.)
 
You always do such a nice job with your presentations...the TiKZ drawings are really nice (and add such quality), and I know they take some effort too. :)
 
Mark, to be completely honest, I have to say once you get to know some simple commands like how to draw a circle, joining lines, labeling angles, coloring some region, etc, then basically you can draw anything out of these simple commands. Of course, my other trick is always look for Klaas for help when I got stuck in some effect I want to produce to my diagram, hehehe... (Happy)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K