MHB Geometry Challenge: Prove $\angle ADE=\angle BDC$ in Convex Quadrilateral $ADBE$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In convex quadrilateral $ADBE$, there is a point $C$ within $\triangle ABE$ such that $\angle EAD+\angle CAB=\angle EBD+\angle CBA=180^{\circ}$.

Prove that $\angle ADE=\angle BDC$.
 
Mathematics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\coordinate[label=left: E] (E) at (-3,0);
\coordinate[label=below: D] (D) at (1.2,-2.75);
\coordinate[label=below: A] (A) at (-1,.-2.828);
\coordinate[label=right: F] (F) at (2.9,-0.768);
\coordinate[label=above: B] (B) at (-1,-0.26);
\coordinate[label=above: C] (C) at (-2,-1.1);
\draw (A) -- (E);
\draw (A) -- (D);
\draw (F) -- (D);
\draw (E) -- (F);
\draw (A) -- (B);
\draw (A) -- (F);
\draw (E) -- (D);
\draw (B) -- (D);
\draw [dashed] (C) -- (D);
\draw [dashed] (C) -- (B);
\draw [dashed] (C) -- (A);
[/TIKZ]

Let F be the second intersection of the circumcircle of $\triangle EAD$ and line $EB$. Then $\angle DBF=180^{\circ}-\angle EBD=\angle CBA$. Moreover,

$\begin{align*}\angle BDF&=180^{\circ}-\angle AEB-\angle ADB\\&=180^{\circ}-(360^{\circ}-\angle EAD-\angle EBD)\\&= 180^{\circ}-(\angle CAB+\angle CBA)\\&=\angle BCA\end{align*}$

These two relations give $\angle BDF \simeq \triangle BCA$.

So $\dfrac{BD}{BF}=\dfrac{BC}{BA}$ Together with $\angle DBF=\angle CBA$, we have $\triangle BDC \simeq \triangle BFA$.

This results in $\angle ADE=\angle AFE=\angle BFA=\angle BDC$. (Q.E.D.)
 
You always do such a nice job with your presentations...the TiKZ drawings are really nice (and add such quality), and I know they take some effort too. :)
 
Mark, to be completely honest, I have to say once you get to know some simple commands like how to draw a circle, joining lines, labeling angles, coloring some region, etc, then basically you can draw anything out of these simple commands. Of course, my other trick is always look for Klaas for help when I got stuck in some effect I want to produce to my diagram, hehehe... (Happy)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top