MHB Geometry Challenge: Prove $\angle ADE=\angle BDC$ in Convex Quadrilateral $ADBE$

AI Thread Summary
In convex quadrilateral $ADBE$, a point $C$ is located within triangle $ABE$ such that the angles satisfy $\angle EAD + \angle CAB = \angle EBD + \angle CBA = 180^{\circ}$. This configuration leads to the conclusion that $\angle ADE = \angle BDC$. The discussion highlights the importance of geometric properties and relationships in proving angle congruence. Additionally, participants share tips on using TiKZ for effective diagram creation, emphasizing the simplicity of basic commands for drawing geometric figures. Overall, the thread combines mathematical proof with practical advice on diagramming techniques.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In convex quadrilateral $ADBE$, there is a point $C$ within $\triangle ABE$ such that $\angle EAD+\angle CAB=\angle EBD+\angle CBA=180^{\circ}$.

Prove that $\angle ADE=\angle BDC$.
 
Mathematics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\coordinate[label=left: E] (E) at (-3,0);
\coordinate[label=below: D] (D) at (1.2,-2.75);
\coordinate[label=below: A] (A) at (-1,.-2.828);
\coordinate[label=right: F] (F) at (2.9,-0.768);
\coordinate[label=above: B] (B) at (-1,-0.26);
\coordinate[label=above: C] (C) at (-2,-1.1);
\draw (A) -- (E);
\draw (A) -- (D);
\draw (F) -- (D);
\draw (E) -- (F);
\draw (A) -- (B);
\draw (A) -- (F);
\draw (E) -- (D);
\draw (B) -- (D);
\draw [dashed] (C) -- (D);
\draw [dashed] (C) -- (B);
\draw [dashed] (C) -- (A);
[/TIKZ]

Let F be the second intersection of the circumcircle of $\triangle EAD$ and line $EB$. Then $\angle DBF=180^{\circ}-\angle EBD=\angle CBA$. Moreover,

$\begin{align*}\angle BDF&=180^{\circ}-\angle AEB-\angle ADB\\&=180^{\circ}-(360^{\circ}-\angle EAD-\angle EBD)\\&= 180^{\circ}-(\angle CAB+\angle CBA)\\&=\angle BCA\end{align*}$

These two relations give $\angle BDF \simeq \triangle BCA$.

So $\dfrac{BD}{BF}=\dfrac{BC}{BA}$ Together with $\angle DBF=\angle CBA$, we have $\triangle BDC \simeq \triangle BFA$.

This results in $\angle ADE=\angle AFE=\angle BFA=\angle BDC$. (Q.E.D.)
 
You always do such a nice job with your presentations...the TiKZ drawings are really nice (and add such quality), and I know they take some effort too. :)
 
Mark, to be completely honest, I have to say once you get to know some simple commands like how to draw a circle, joining lines, labeling angles, coloring some region, etc, then basically you can draw anything out of these simple commands. Of course, my other trick is always look for Klaas for help when I got stuck in some effect I want to produce to my diagram, hehehe... (Happy)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top