mheslep
Gold Member
- 362
- 719
Astronuc said:Atmospheric pressure at the top of the highest point in the primary system, but going down to the bottom of the core under a few meters of the liquid fuel, the pressure will be greater by ρgh, so the bottom of the core will be several atmospheres. I imagine there will be some kind of containment to collect the radioactive gases and volatiles in the event of the break in the primary system, and particularly where the steam generator is located, since the steam pressure is likely to be on the order of 900 to 1000 psi. A steam-fluorine reaction would be problematic with respect to HF gas.
Note that a commercial scale has not yet been constructed let alone designed. As far as I know, none of the promoters/advocates in the US have designed or constructed any type of nuclear plant.
The pgh at the bottom of a salt tank would be on a liquid, which if exposed via a leak would have no phase change flash. A secondary salt loop is usually considered, so that if a Rankine cycle is used eventually involving steam there is no radioactivity involved . Given the high temperatures afforded by a lftr core, a Brayton cycle seems likely. In any case, containment would not have the problem of dealing with high pressure (300atm) gases.