MHB Gibbs Phenomenon: Investigating Fourier Series of a Discontinuity

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Gibbs Phenomenon
Click For Summary
The discussion focuses on the Gibbs phenomenon in relation to the Fourier series of the function f(x) = sgn(x) over the interval [-π, π], particularly near the discontinuity at x = 0. It is noted that since the function is odd, analyzing it over the interval [0, π] is sufficient for understanding its behavior. The concept of an odd function is clarified, emphasizing that f(0) equals zero. Participants express curiosity about the rationale behind examining only half of the interval. The conversation highlights the significance of the Gibbs phenomenon in the context of Fourier series and discontinuities.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the Gibbs phenomenon.
We want to look at the behaviour of a Fourier series of a region of discontinuity of $f$, especially we are looking at the function $f(x)=sgn(x), x \in [-\pi, \pi]$ near $0$.Since $f$ is odd, it suffices to look its behaviour at $[0, \pi]$.

Why does the last sentence stand?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

I am looking at the Gibbs phenomenon.
We want to look at the behaviour of a Fourier series of a region of discontinuity of $f$, especially we are looking at the function $f(x)=sgn(x), x \in [-\pi, \pi]$ near $0$.Since $f$ is odd, it suffices to look its behaviour at $[0, \pi]$.

Why does the last sentence stand?? (Wondering)

A function is 'odd' if is $\displaystyle f(x) = - f(- x)$, so that is $f(0)=0$. Regarding the Gibbs phenomenon see...

Gibbs Phenomenon -- from Wolfram MathWorld

Kind regards

$\chi$ $\sigma$
 
chisigma said:
A function is 'odd' if is $\displaystyle f(x) = - f(- x)$, so that is $f(0)=0$. Regarding the Gibbs phenomenon see...

Gibbs Phenomenon -- from Wolfram MathWorld

Kind regards

$\chi$ $\sigma$

And why is it sufficient to look at the half of the interval, $[0, \pi]$ ? (Wondering)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
2K
Replies
28
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K