MHB Give a linear map that satisfies given properties

Click For Summary
SUMMARY

The discussion centers on finding a linear map $\phi:\mathbb{R}^3\rightarrow \mathbb{R}^2$ that satisfies specific mappings for the vectors $v_1=\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}$, $v_2=\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}$, and $w=\begin{pmatrix}1 \\ 0 \\ 2\end{pmatrix}$. The conclusion is that no such linear map exists that satisfies the conditions $\phi(v_1)=\begin{pmatrix}1 \\ 0\end{pmatrix}$, $\phi(v_2)=\begin{pmatrix}0 \\ 1\end{pmatrix}$, and $\phi(w')=\begin{pmatrix}0 \\ 0\end{pmatrix}$ due to the linear dependence of the vectors involved. The final matrix representation of the linear transformation is confirmed to be $A=\begin{pmatrix}0 & 1 & 0 \\ 2 & -1 & -1\end{pmatrix}$.

PREREQUISITES
  • Understanding of linear transformations in vector spaces.
  • Familiarity with matrix representation of linear maps.
  • Knowledge of linear independence and dependence of vectors.
  • Ability to perform matrix operations, including inversion.
NEXT STEPS
  • Study the properties of linear transformations in $\mathbb{R}^n$.
  • Learn about the implications of linear dependence in vector spaces.
  • Explore the concept of matrix rank and its relation to linear mappings.
  • Investigate the application of the Rank-Nullity Theorem in linear algebra.
USEFUL FOR

Mathematicians, students studying linear algebra, and anyone interested in understanding linear mappings and their properties in vector spaces.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $v_1:\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}, \ \ v_2:\begin{pmatrix}1 \\ 0\\ 1\end{pmatrix}\in \mathbb{R}^3$.

  1. Let $w=\begin{pmatrix}1 \\ 0 \\2\end{pmatrix}\in \mathbb{R}^3$. If possible, give a linear map $\phi:\mathbb{R}^3\rightarrow \mathbb{R}^2$ such that $\phi (v_1)=\begin{pmatrix}1 \\ 0\end{pmatrix}, \ \ \phi (v_2)=\begin{pmatrix}0 \\ 1\end{pmatrix}, \ \ \phi (w)=\begin{pmatrix}0 \\ 0\end{pmatrix}$.
  2. Let $w'=\begin{pmatrix}0 \\ 1 \\0\end{pmatrix}\in \mathbb{R}^3$. If possible, give a linear map $\phi:\mathbb{R}^3\rightarrow \mathbb{R}^2$ such that $\phi (v_1)=\begin{pmatrix}1 \\ 0\end{pmatrix}, \ \ \phi (v_2)=\begin{pmatrix}0 \\ 1\end{pmatrix}, \ \ \phi (w')=\begin{pmatrix}0 \\ 0\end{pmatrix}$.
I have done the following:

  1. The three vectors $v_1,v_2, w$ are linearly independent and so they form a basis of $\mathbb{R}^3$.

    We consider an arbitrary vector in $\mathbb{R}^3$ and we write it as a linear combination of the vectors of the basis.

    \begin{equation*}\begin{pmatrix}x_1 \\ x_2\\ x_3\end{pmatrix}=c_1\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}+c_2\begin{pmatrix}1 \\ 0\\ 1\end{pmatrix}+c_3\begin{pmatrix}1 \\ 0 \\2\end{pmatrix}=\begin{pmatrix}1 & 1 & 1\\ 1 & 0 & 0 \\ 1 & 1 & 2\end{pmatrix}\begin{pmatrix}c_1\\ c_2 \\ c_3\end{pmatrix}\end{equation*}

    We multiply by the inverse matrix and we get
    \begin{equation*}\begin{pmatrix}c_1\\ c_2 \\ c_3\end{pmatrix}=P^{-1}\begin{pmatrix}x_1 \\ x_2\\ x_3\end{pmatrix}=\begin{pmatrix}0 & 1 & 0\\ 2 & -1 & -1 \\ -1 & 0 & 1\end{pmatrix}\begin{pmatrix}x_1 \\ x_2\\ x_3\end{pmatrix}=\begin{pmatrix}x_2 \\ 2x_1-x_2-x_3\\ -x_1+x_3\end{pmatrix}\end{equation*}

    So
    \begin{equation*}\begin{pmatrix}x_1 \\ x_2\\ x_3\end{pmatrix}=x_2\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}+(2x_1-x_2-x_3)\begin{pmatrix}1 \\ 0\\ 1\end{pmatrix}+( -x_1+x_3)\begin{pmatrix}1 \\ 0 \\2\end{pmatrix}\end{equation*}

    We calculate $\phi \begin{pmatrix}x_1 \\ x_2\\ x_3\end{pmatrix}$ using the linearity of $\phi$:
    \begin{align*}\phi \begin{pmatrix}x_1 \\ x_2\\ x_3\end{pmatrix}&=\phi \left (x_2\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}+(2x_1-x_2-x_3)\begin{pmatrix}1 \\ 0\\ 1\end{pmatrix}+( -x_1+x_3)\begin{pmatrix}1 \\ 0 \\2\end{pmatrix}\right )\\ & =x_2\cdot \phi \begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}+(2x_1-x_2-x_3)\cdot \phi \begin{pmatrix}1 \\ 0\\ 1\end{pmatrix}+( -x_1+x_3)\cdot \phi \begin{pmatrix}1 \\ 0 \\2\end{pmatrix}\\ & =x_2 \begin{pmatrix}1 \\ 0\end{pmatrix}+(2x_1-x_2-x_3) \begin{pmatrix}0\\ 1\end{pmatrix}+( -x_1+x_3) \begin{pmatrix}0 \\ 0 \end{pmatrix}\\ & = \begin{pmatrix}x_2 \\ 2x_1-x_2-x_3 \end{pmatrix}\end{align*}
  2. The vectors $v_1, v_2, w'$ are linearly dependent, since \begin{equation*}\begin{pmatrix}0 \\ 1\\ 0\end{pmatrix}=\begin{pmatrix}1 \\ 1\\ 1\end{pmatrix}-\begin{pmatrix}1 \\ 0\\ 1\end{pmatrix}\Rightarrow w'=v_1-v_2\end{equation*}

    We apply $\phi$ at this equation and we get: \begin{equation*}\phi (w')=\phi (v_1-v_2)=\phi (v_1)-\phi (v_2)\Rightarrow \begin{pmatrix}0 \\ 0\end{pmatrix}=\begin{pmatrix}1 \\ 0\end{pmatrix}-\begin{pmatrix}0 \\ 1\end{pmatrix}\Rightarrow \begin{pmatrix}0 \\ 0\end{pmatrix}=\begin{pmatrix}1 \\ -1\end{pmatrix}\end{equation*}

    Therefore there is no linear map $\phi:\mathbb{R}^3\rightarrow \mathbb{R}^2$ such that$\phi (v_1)=\begin{pmatrix}1 \\ 0\end{pmatrix}$, $\phi (v_2)=\begin{pmatrix}0 \\ 1\end{pmatrix}$ und $\phi (w')=\begin{pmatrix}0 \\ 0\end{pmatrix}$.
Is everything correct? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Hey mathmari!

Looks correct to me. (Nod)

Btw, here is how we can do 1. in a more straight forward fashion.
Let $\phi(x)=Ax$, then:
$$A\begin{pmatrix}v_1&v_2&w\end{pmatrix}=\begin{pmatrix}\phi(v_1)&\phi(v_2)&\phi(w)\end{pmatrix}
\implies A\begin{pmatrix}1&1&1\\1&0&0\\1&1&2\end{pmatrix}=\begin{pmatrix}1&0&0\\0&1&0\end{pmatrix}
\implies A=\begin{pmatrix}1&1&1\\1&0&0\\1&1&2\end{pmatrix}^{-1}\begin{pmatrix}1&0&0\\0&1&0\end{pmatrix}$$
(Nerd)
 
Klaas van Aarsen said:
Looks correct to me. (Nod)

Btw, here is how we can do 1. in a more straight forward fashion.
Let $\phi(x)=Ax$, then:
$$A\begin{pmatrix}v_1&v_2&w\end{pmatrix}=\begin{pmatrix}\phi(v_1)&\phi(v_2)&\phi(w)\end{pmatrix}
\implies A\begin{pmatrix}1&1&1\\1&0&0\\1&1&2\end{pmatrix}=\begin{pmatrix}1&0&0\\0&1&0\end{pmatrix}
\implies A=\begin{pmatrix}1&1&1\\1&0&0\\1&1&2\end{pmatrix}^{-1}\begin{pmatrix}1&0&0\\0&1&0\end{pmatrix}$$
(Nerd)

Ahh ok! Thanks a lot! (Star)
 
An alternative method: Since A maps R3 to R2 it can be represented by a matrix with three columns and two rows. Write it as
$A= \begin{pmatrix}a & b & c \\ d & e & f\end{pmatrix}$
A maps $\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}$ to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ so $
\begin{pmatrix}a & b & c \\ d & e & f\end{pmatrix}
\begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}= \begin{pmatrix}a+ b+ c \\ d+ e+ f\end{pmatrix}= \begin{pmatrix}1 \\ 0 \end{pmatrix}
$
so we have the equations a+ b+ c= 1 and d+ e+ f= 0.

A maps $\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}$ to $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ so $\begin{pmatrix}a & b & c \\ d & e & f\end{pmatrix}
\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}= \begin{pmatrix}a+ c \\ d+ f\end{pmatrix}= \begin{pmatrix}0 \\ 1 \end{pmatrix}
$
so we have the equations a+ c= 0 and d+ f= 1.

A maps $\begin{pmatrix}1 \\ 0 \\ 2\end{pmatrix}$ to $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ so $\begin{pmatrix}a & b & c \\ d & e & f\end{pmatrix}
\begin{pmatrix}1 \\ 0 \\ 2\end{pmatrix}= \begin{pmatrix}a+ 2c \\ d+ 2f\end{pmatrix}= \begin{pmatrix}0 \\ 0 \end{pmatrix}
$
so we have the equations a+ 2c= 0 and d+ 2f= 0.

We have six equations, a+ b+ c= 1, d+ e+ f= 0, a+ c= 0, d+ f= 1, a+ 2c= 0, and d+ 2f= 0, to solve for a, b, c, d, e, and f.


From a+ c= 0 and a+ 2c= 0, c= 0. From d+ f= 1 and d+ 2f= 0, f= -1. Then a+ 0= 0 so a= 0 and d- 1= 1 so d= 2. a+ b+ c= 0+ b+ 0= 1 so b= 1. d+ e+ f= 2+ e- 1= 0 so e= -1.
$A= \begin{pmatrix}0 & 1 & 0 \\ 2 & -1 & -1 \end{pmatrix}$.


 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K