Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Given 3 points how to find the centre and radius of a circle in 3 D?

  1. May 19, 2008 #1
    Given 3 points how to find the centre and radius of a circle in 3 D??

    Say the 3 points are (a,b,c),(a1.b1,c1) and (a2,b2,c2)...
     
  2. jcsd
  3. May 19, 2008 #2

    exk

    User Avatar

    Do you mean a sphere? Are these arbitrary points anywhere in the sphere or on the surface?
     
  4. May 19, 2008 #3
    Here is the equation of the points {x_i,y_i} for i = 1,2,3 in terms of the variables x and y:

    [tex]
    \left|
    \begin{array}{llll}
    x^2+y^2 & x & y & 1 \\
    x_1^2+y_1^2 & x_1 & y_1 & 1 \\
    x_2^2+y_2^2 & x_2 & y_2 & 1 \\
    x_3^2+y_3^2 & x_3 & y_3 & 1
    \end{array}
    \right|=0
    [/tex]
     
  5. May 19, 2008 #4

    Borek

    User Avatar

    Staff: Mentor

    Three points are not enough to define the sphere. Four will do the trick (unless they will not, but you need four at least). Points inside the sphere do not belong to the sphere. IMHO question is very precise.
     
  6. May 19, 2008 #5

    exk

    User Avatar

    Borek you are absolutely right. I just wanted to make sure.
     
  7. May 19, 2008 #6

    mathwonk

    User Avatar
    Science Advisor
    Homework Helper
    2015 Award

    one might find the plane through the three points, then choosing two pairs of points, find the plane perpendicular bisector of the segments they determine.

    these three planes should meet at the center of the circle.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Given 3 points how to find the centre and radius of a circle in 3 D?
  1. Find centre of circle (Replies: 5)

Loading...