MHB Given a range value, find the correspoding domain value

sharkman1
Messages
1
Reaction score
0
Here is the problem:
If -1 is a range value for the function f(x) = -6x + 11, find the domain value.

thank you for your help
 
Mathematics news on Phys.org
I've changed the title of your thread to reflect the nature of the question being asked. This gives people an indication of what is being discussed without having to view the thread.

We also ask that our users show what they have tried, so we know best how to help. When we don't know what you've tried we can't really offer help specific to your needs. We don't want to just do your work for you because this doesn't really help you learn.

Is range associated with $f$ or $x$?
 
Is it -6x + 11 = -1?
 
Monoxdifly said:
Is it -6x + 11 = -1?

Yes, we set:

$$f(x)=-1$$

And then solve for $x$ to get the "domain" value associated with the "range" value of -1. I don't think I have ever read a problem termed like this, so this is how I think it should be interpreted.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top