Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Goldstino field

  1. Dec 22, 2014 #1
    I'm a novice in SUSY and I'v got a question concerning spontaneous supersymmetry breaking and goldstinos. In Martin's review on page 68 there is a proof of a statement about existence of massless particle when one of ##F_i##'s or ##D_a##'s VEV is not zero. The thing I don't get is why vector ##\tilde{G}## is proportional to goldstino wave function. I guess that it means that after diagonalization of ##m_F## there is a field ##\Psi = \sum F_i \, \Psi_i + \sum D_a \, \lambda_a##, that corresponds to zero eigenvalue of ##m_F##. Is it correct? If so, could you please give any hints of proof of this statement.
     
  2. jcsd
  3. Dec 23, 2014 #2

    ChrisVer

    User Avatar
    Gold Member

    Well, if I understand your question, the vector [itex]G[/itex] has by definition zero mass eigenvalues, so it's a massless field.
    This can be written as [itex]m_F G = 0 \times G [/itex].
    As he states the [itex]G[/itex] is non-trivial only if the vevs are non-zero (so you have the symmetry breaking and thus the Nambu Goldstone field).
     
    Last edited: Dec 23, 2014
  4. Dec 23, 2014 #3
    Yes, basically I can prove that ##G## vector has zero eigenvalue. But obviously it's not goldstino field,because it's a constant. I assume that goldstino field is ##\sum_i \, F_i \, \psi_i + \sum_a \, D_a \, \lambda_a## but I cannot prove it.
     
  5. Dec 23, 2014 #4

    ChrisVer

    User Avatar
    Gold Member

    it doesn't have to be exactly this kind of combination. The components of the Weyl spinors and gauginos (your set of basis) just have to be proportional to the auxiliary fields' vevs (G), so that the Goldstino will keep being massless.
     
  6. Dec 23, 2014 #5
    Could you please prove this statement? In fact this is the point that I don't get... :(
     
  7. Dec 24, 2014 #6

    ChrisVer

    User Avatar
    Gold Member

    Because you want to get zero mass eigenvalue for the goldstino...
    The goldstino is going to take away some degrees of freedom from your Weyl spinor or gauginos...
     
  8. Dec 25, 2014 #7
    Ok, let me explain how I see it...For simplcity let's concider theory wtih only chiral superfields. We know that in some mininum of scalar potential ##V(\phi,\phi^*)## VEV's of auxillary fields ##F_i## are nonzero and vector ##(F_1,...,F_N)## is anihillated by fermion mass matrix ##m_F##. Than I would try to diagonalize this matrix by introducing new fermion fields ##\tilde{\psi}_i##. My statement is as follows: one of this fields ##\tilde{\psi}_k = \sum_{i} F_i \, \psi_i## corresponds to zero eigenvalue. I guess that it's a true statement. Could you please prove it (algebraically, using formulas)? As for me, I have no idea how to do it :(
     
  9. Dec 25, 2014 #8

    ChrisVer

    User Avatar
    Gold Member

    I think it's pretty clear, the operator [itex] m_F G [/itex] acting on the space of [itex] \left \{ \psi_i , \lambda_a \right\} [/itex] is equivalent as an operator to the [itex] 0 [/itex], and that's the definition of a massless goldstino.
     
  10. Dec 25, 2014 #9
    Unfortunately, it's not pretty clear for me because ##m_F G## is not even a matrix...
     
  11. Dec 26, 2014 #10

    ChrisVer

    User Avatar
    Gold Member

    it's zero...
     
  12. Dec 26, 2014 #11
    Ok, then arbitrary vector is goldstino field...?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Goldstino field
  1. Field transformations (Replies: 3)

  2. Kinds of Fields (Replies: 3)

  3. Understanding fields (Replies: 6)

Loading...