- #1

Orion1

- 973

- 3

I am inquiring if anyone here is qualified to numerically demonstrate the solution to this equation?

The equation is the Proton lifetime derived from the SU(5) Georgi-Glashow model listed in reference 1, eq. (19).

SU(5) Proton lifetime:

[tex]\tau_p \geq \frac{1}{\alpha_{(5)}^2} \frac{M_X^4}{m_p^5}[/tex]

[tex]\tau_p \geq 10^{30} \; \text{years}[/tex]

According to reference 1, the parameters are:

[tex]m_p \geq 0.9382 \; \text{GeV}[/tex] - Proton mass

[tex]M_X \geq 10^{14} \; \text{GeV}[/tex] - X Boson mass

[tex]\alpha_{(5)} = \; \text{?}[/tex] - SU(5) fine structure consant

Experimentally observed values:

[tex]\tau_p \geq 10^{32} \; \text{years}[/tex] - (1990)

[tex]\tau_p \geq 10^{35} \; \text{years}[/tex] - Super-Kamiokande

References for the symbolic mathematical proof to this equation and the value of [tex]\alpha_{(5)}[/tex] would be appreciated.

Reference:

http://home.uchicago.edu/~madhav/su5.pdf" [Broken]

http://en.wikipedia.org/wiki/Georgi-Glashow_model" [Broken]

http://en.wikipedia.org/wiki/Proton_decay" [Broken]

http://en.wikipedia.org/wiki/Electronuclear_force" [Broken]

http://en.wikipedia.org/wiki/Grand_unification_theory#cite_note-0"

http://hyperphysics.phy-astr.gsu.edu/hbase/forces/unify.html" [Broken]

http://hyperphysics.phy-astr.gsu.edu/hbase/astro/unify.html#c1"

Last edited by a moderator: