Sum of Infinite Series: Finding the Value of S

Click For Summary
SUMMARY

The discussion centers on the evaluation of the infinite series $$\sum_{n=1}^\infty x_n$$, specifically the alternating series $$1 - 1 + 1 - 1 + \cdots$$, which diverges. Participants explore techniques for assigning values to divergent series, notably through Cesaro summation and Abel's theorem. The Cesaro sum of Grandi's series converges to $$\frac{1}{2}$$, while Abel's theorem provides a method to evaluate power series at their convergence limit. The conversation highlights the importance of understanding convergence types, particularly conditional convergence, in relation to series manipulation.

PREREQUISITES
  • Understanding of infinite series and convergence concepts
  • Familiarity with Cesaro summation techniques
  • Knowledge of Abel's theorem and its application to power series
  • Basic algebraic manipulation of series and limits
NEXT STEPS
  • Study the properties of Cesaro sums and their applications in series convergence
  • Learn about Abel's theorem and its implications for power series evaluation
  • Explore the concept of conditional convergence and its significance in series rearrangement
  • Investigate other methods for summing divergent series, such as Borel summation
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in advanced series convergence techniques will benefit from this discussion.

docnet
Messages
796
Reaction score
486
Homework Statement
.
Relevant Equations
.
Using the given rule for the ##x_n##, write $$ \sum_l y_l = x_1 + \frac{1}{2} x_2 + \frac{1}{6} x_2 + \frac{1}{3} x_3 + \frac{1}{12} x_2 + \frac{1}{12} x_3 + \frac{1}{20} x_2 + \cdots + \frac{1}{n} x_n $$
$$ = x_1 + \sum_{n=2}^\infty \frac{1}{n(n-1)} x_2 + \sum_{n=3}^\infty \frac{2}{n(n-1)} x_3 + \sum_{n=4}^\infty \frac{3}{n(n-1)} x_4 + \cdots + \sum_{k=n}^\infty \frac{n-1}{k(k-1)} x_n $$

in general, ## \sum_{n=1}^m \frac{1}{n(n-1)} = \sum_l ( \frac{1}{n} - \frac{1}{n+1} ) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} + \cdots \frac{1}{m-1} - \frac{1}{m} - \frac{1}{m+1} ## The sum collapses like a telescope and everything is canceled out except for the first and last terms. Its limit as ## m \longrightarrow \infty ## is ##1##. So,

$$ = x_1 + x_2 + x_3 + \cdots + x_n = \sum_{k=1}^n x_k$$

The infinite series ## \sum_{n=1}^\infty x_n = 1 - 1 + 1 - 1 + \cdots ## diverges since its value alternates between 0 and 1. But, we write ## \sum_n x_n = \sum_l y_l ## and assume the new series converges to a number ##S##.

##\sum_l y_1 = S = 1 + 1 - 1 + 1 + \cdots##

subtract ##1## from both sides

##S - 1 = -1 + 1 + 1 - + \cdots##
##S -1 = - S##
##S = \frac{1}{2}##

i'm unsure about the part where ##S## is used as a variable for a mere algebra trick. it seems like the result from the first part of the question isn't really used.
 
Physics news on Phys.org
What is this for? What you have written is incomplete.

You ended up with a divergent series. There are ways to generalize summation for divergent series, but when those techniques are applicable is a specialized topic.
 
Last edited:
caz said:
What is this for? What you have written is incomplete.

You ended up with a divergent series. There are ways to generalize summation for divergent series, but when those techniques are applicable is a specialized topic.
I'm sorry. forgot to include the question.
proovve.png
 
In regards to the first part, you are almost there. You need to utilize the fact that Σxk converges. For the second part, while I have not done it, I assume that they want you to generate and find the limit of Σyk for xk=±1. Hint: look at the partial sums.
 
Last edited:
caz said:
In regards to the first part, you are almost there. You need to utilize the fact that Σxk converges.
##\sum x_k## converges to a sum and ##\sum x_k = \sum y_n##, so the latter converges.

caz said:
For the second part, while I have not done it, I assume that they want you to generate and find the limit of Σyk for xk=±1. Hint: look at the partial sums.

I found a few different approaches here, but could not figure out the method you're describing. could you please drop another hint? By Cesaro Sum: The Cesaro sum is one way to assign a value to a divergent series. It computes the arithmetic mean of the first ##n## partial sums and take its limit as ##n\to \infty##.

The partial sums of the Grandi's series are ##\{1,0,1,0,1,...\}##. The average of the first ##2n-1## terms is ##\frac{n}{2n-1}## and the average of the first ##2n## terms is ##\frac{1}{2}##. So, the sequence of averages is ##\{ 1, \frac{1}{2}, \frac{2}{3}, \frac{1}{2}, \frac{3}{5},...\}##
$$ \lim_{n \to \infty} \frac{s_1+s_2+s_3+\cdots + s_n}{n} = \frac{1}{2}$$
The Cesaro sum of Grandi's series is ##1/2##.

By Abel's Theorem: Abel's theorem states the sum of a power series that converges for ##|x|<1## , then the value of the series at ##x=1## is the limit of the series as ##x## tends to ##1## from inside of the interval.

Evaluated at ##x=1##, $$\sum_{k=0}^\infty(-x)^k$$ becomes $$\sum_{n=0}^\infty (-1)^n$$ The first series converges to ##\frac{1}{1+x}## with the radius of convergence of ##|x|<1##. By abel's theorem, the value of the series at ##x=1## is ##\frac{1}{1+1}=\frac{1}{2}##.
 
I looked at this too quickly the first time. I am not a hardcore math guy, so if someone knows a better approach ...

1) Unless I am missing something ##\sum \frac{1}{n(n-1)} = \sum ( \frac{1}{n-1} - \frac{1}{n} )## and you have not dealt with the fact that you do not always start with n=2 and that there are constants multiplying the xk in the individual sums.
2) Regardless, you can only rearrange terms in a series and preserve the limit in general if it is absolutely convergent. Since the xk∈ℝ, this series could only be conditionally convergent
3) I believe that this problem is being used to motivate Cesaro Sums.
4) If you look at the sequence of partial sums of yk it is the sequence of averages of the partial sums of xk
5) Since xk converges, you can get the partial sums of xk arbitrarily close to the limit so you can also get the averages arbitrarily close although it may take you more terms.
 
Last edited:
caz said:
1) Unless I am missing something ##\sum \frac{1}{n(n-1)} = \sum ( \frac{1}{n-1} - \frac{1}{n} )## and you have not dealt with the fact that you do not always start with n=2 and that there are constants multiplying the xk in the individual sums.
Terms that sum from ##k>2##,
$$ \sum_{n = k}^m \frac{k-1}{n(n-1)} = \sum_{n = k}^m (k-1) \Big( \frac{1}{n-1} - \frac{1}{n} \Big) = (k-1) \Big( \frac{1}{k-1} + \frac{1}{m-1} - \frac{1}{m} - \frac{1}{m+1} \Big) \longrightarrow 1 \quad \text{as}\quad m \longrightarrow \infty $$
so each constant multiplying the ##k_x## sums to 1.

caz said:
2) Regardless, you can only rearrange terms in a series and preserve the limit in general if it is absolutely convergent. Since the xk∈ℝ, this series could only be conditionally convergent
the problem says given a convergent ##\sum x_k## show that ##\sum x_k = \sum y_k##, so seems like there is no need to think about conditionally convergent..
 
oops.. I posted early by accident... will follow up soon
 
caz said:
3) I believe that this problem is being used to motivate Cesaro Sums.
4) If you look at the sequence of partial sums of yk it is the sequence of averages of the partial sums of xk
5) Since xk converges, you can get the partial sums of xk arbitrarily close to the limit so you can also get the averages arbitrarily close although it may take you more terms.
$$\sum x_k = 1-1+1-1+1-1+\cdots$$

$$\text{partial sum of x_k}= \quad \begin{cases} s_i = 1 & \text{if i is odd} \quad \\ s_i = 0 & \text{if i is even} \end{cases}$$

$$\sigma_n = \frac{s_1 + s_2 + \cdots + s_n}{n}= \sum_{i=1}^n y_i$$

##s_n \longrightarrow 1/2## as ##n \longrightarrow \infty## and ##\sigma_n \longrightarrow s## as ##n \longrightarrow \infty##

$$\sigma_n = \begin{cases} 1/2 & \text{if n is odd} \quad \\ \frac{n+1}{2n} & \text{if n is even} \end{cases}$$

$$\lim_{n \rightarrow \infty} \frac{n+1}{2n} = \frac{1}{2}$$
so $$\sigma_n \longrightarrow \frac{1}{2}$$
 
  • #10
The partial sums of the yk are equivalent to Cesaro partial sums of xk so this problem motivates Cesaro Sums. This first part of the problem is about showing that a convergent series has the same limit as it’s Cesaro Sum. I think you are incorrect in not thinking about conditional convergence.
edit:
IMG_20220405_0001.png

You do not need to say Cesaro anywhere. The first part is to show if the sequence (pk) converges, then the sequence (##\sum_{n = 1}^k \frac{p_n}{k}##) converges to the same value. The second part is to use yk to calculate the "limit".
 
Last edited:
  • #11
caz said:
The partial sums of the yk are equivalent to Cesaro partial sums of xk so this problem motivates Cesaro Sums. This first part of the problem is about showing that a convergent series has the same limit as it’s Cesaro Sum. I think you are incorrect in not thinking about conditional convergence.
edit:
View attachment 299465
You do not need to say Cesaro anywhere. The first part is to show if the sequence (pk) converges, then the sequence (##\sum_{n = 1}^k \frac{p_n}{k}##) converges to the same value. The second part is to use yk to calculate the "limit".
Oh ok.. I undertand. The series converges, so the sequence of the averages of partial sums converges too, I think my professor mentioned it is a Cauchy convergent sequence.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 29 ·
Replies
29
Views
6K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
9K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K