Graph of Kinetic Energy v. Displacement of a Falling Object

AI Thread Summary
The discussion focuses on creating a graph of kinetic and potential energy versus displacement for a falling object with an initial horizontal speed of 30 m/s from a height of 80 m. The potential energy is represented as a linear graph due to the constant values of mass and gravity. The kinetic energy's relationship to displacement is clarified using kinematic equations, revealing that kinetic energy is directly proportional to displacement. The conclusion is that while potential energy decreases linearly, kinetic energy increases in a manner that reflects its dependence on displacement. This understanding solidifies the graph's representation of energy dynamics in free fall.
brendan3eb
Messages
53
Reaction score
0
[solved] Graph of Kinetic Energy v. Displacement of a Falling Object

Homework Statement


Draw and label a graph with energy for the y-axis and displacement for the x-axis of the kinetic energy and potential energy of an object in free-fall that started with a horizontal speed of 30 m/s from a height of 80 m.


Homework Equations


U=mgh
k=1/2mv^2


The Attempt at a Solution


I drew a straight line with negative slope for potential energy because m and g are constants in U=mgh, so it should be a linear graph, as for kinetic energy, I am sitting on the fence on whether or not to draw a straight line or a curve The v^2 makes me want to draw a curve, however, if the the potential energy is a straight line and K = E - U, then shouldn't k be directly proportional to displacement as well?
 
Last edited:
Physics news on Phys.org
brendan3eb said:
The v^2 makes me want to draw a curve, however, if the the potential energy is a straight line and K = E - U, then shouldn't k be directly proportional to displacement as well?
Good thinking!

Why not use a bit of kinematics to double check? What's the relationship between v (or v^2) and displacement for a falling object?
 
ahh..

v^2=v0^2+2a(x-x0)
but since initial velocity in the y direction is 0
v^2=-2g(x-x0)

and since -2g is a constant, v^2 is directly proportional to displacement, and thus kinetic energy is directly proportional to displacement!

Thanks Doc Al!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top