Graph of time vs distance for sizing a motor for linear motion

AI Thread Summary
When sizing a motor for linear motion with a short stroke of 0.5 mm and a cycle time of 0.05 seconds, the graph of time versus distance will reflect the need for precise control within a feedback loop. Calculating the required acceleration involves using the formula Distance = 0.5 * a * t^2, leading to an acceleration of 0.8 m/s² for optimal performance. The motion profile should be designed to ensure that the motor stops within the specified position tolerance, and if oscillation occurs, adjustments may be necessary. Understanding the integration of acceleration and velocity is crucial for motion control, especially when dealing with finite jerk profiles to minimize positioning errors. Diagrams can aid in visualizing these concepts, particularly in complex engineering environments.
Travis T
Messages
18
Reaction score
2
Hi, I'm sizing motor for a linear motion,
usually for the time distance graph would be looks like this,
1706002081425.png

however, how does the graph look like if the stroke is very short?
Example: velocity is 0.1m/s, acceleration is 1m/s2, moving stroke is 0.5mm, a cycle is within 0.05s
the application is to compensate positioning errors which is very small.
 
Engineering news on Phys.org
Travis T said:
... the application is to compensate positioning errors which is very small.
The motor is inside a feedback loop, so the inertia of the motor, and the characteristics of the feedback loop will be very important to the performance.
Travis T said:
... however, how does the graph look like if the stroke is very short?
You might consider using a piezo transducer to make the fine position correction.
 
I like to solve servo motion problems by making a simple hand sketch showing acceleration, velocity, and position. You want to move 0.5 mm in 0.05 seconds as precisely as practical. Start the calculations by assuming a constant acceleration move, as shown in the simple sketch below:
PosVelAcc.jpg

Since ##Distance = 0.5 * a * t^2##, and we know both the distance and the time, we can solve for the acceleration and add that number to the sketch. This is a minimum acceleration move, which is a good place to start when you want precision or a fast move. The peak velocity is then ##0.8 m/s^2 * 0.025 s = 0.02 m/s##. If the acceleration and peak velocity are within the servo specifications, then program that move, and check the response. Does it do what you want?

If it stops within your position tolerance, you are finished. If it oscillates to a stop, the next step is a finite jerk move. If that happens, post again and we can help you solve that problem.
 
  • Like
Likes Travis T and DeBangis21
jrmichler said:
I like to solve servo motion problems by making a simple hand sketch showing acceleration, velocity, and position. You want to move 0.5 mm in 0.05 seconds as precisely as practical. Start the calculations by assuming a constant acceleration move, as shown in the simple sketch below:
View attachment 339044
Since ##Distance = 0.5 * a * t^2##, and we know both the distance and the time, we can solve for the acceleration and add that number to the sketch. This is a minimum acceleration move, which is a good place to start when you want precision or a fast move. The peak velocity is then ##0.8 m/s^2 * 0.025 s = 0.02 m/s##. If the acceleration and peak velocity are within the servo specifications, then program that move, and check the response. Does it do what you want?

If it stops within your position tolerance, you are finished. If it oscillates to a stop, the next step is a finite jerk move. If that happens, post again and we can help you solve that problem.

Is it Distance = 0.25 * a * t^2? instead of 0.5?
how do we get 0.8m/s^2?
 
Velocity is the integral of acceleration, or the area under the acceleration curve.
Similarly, position is the integral of velocity, or the area under the velocity curve.

Since the acceleration curve has a discontinuity, the integration is in two parts. The first part is from 0 to 0.025 seconds, the second part from 0.025 seconds to 0.05 seconds. The two parts are then summed to get the final velocity, which is zero. The curves help show that the acceleration is positive for halfway, and negative for the last halfway. The integral of the acceleration is the velocity, which increases to a maximum at the halfway point, then decreases to zero at the end.

It is important understand these concepts when doing motion control, and the diagrams help to understand the concepts. The diagrams are not very important for simple problems like this. They become much more important if you need, for example, a finite jerk motion profile to reduce position errors. The diagrams are also useful in a large engineering department to communicate to other engineers.

We get ##0.8 m/s^2## by solving ##Distance = 0.5at^2## as follows:
Distance = 0.25 mm (halfway to 0.5 mm) (distance from beginning to first discontinuity)
t = 0.025 second (halfway to 0.05 second) (time from beginning to first discontinuity)
The only unknown is the acceleration, so solve the equation for the acceleration.
 
jrmichler said:
Velocity is the integral of acceleration, or the area under the acceleration curve.
Similarly, position is the integral of velocity, or the area under the velocity curve.

Since the acceleration curve has a discontinuity, the integration is in two parts. The first part is from 0 to 0.025 seconds, the second part from 0.025 seconds to 0.05 seconds. The two parts are then summed to get the final velocity, which is zero. The curves help show that the acceleration is positive for halfway, and negative for the last halfway. The integral of the acceleration is the velocity, which increases to a maximum at the halfway point, then decreases to zero at the end.

It is important understand these concepts when doing motion control, and the diagrams help to understand the concepts. The diagrams are not very important for simple problems like this. They become much more important if you need, for example, a finite jerk motion profile to reduce position errors. The diagrams are also useful in a large engineering department to communicate to other engineers.

We get ##0.8 m/s^2## by solving ##Distance = 0.5at^2## as follows:
Distance = 0.25 mm (halfway to 0.5 mm) (distance from beginning to first discontinuity)
t = 0.025 second (halfway to 0.05 second) (time from beginning to first discontinuity)
The only unknown is the acceleration, so solve the equation for the acceleration.
Thanks for the clear explanation.
 
  • Like
Likes berkeman and Tom.G
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Carburetor CFM A Holley Carb rated at 500 cfm 2 barrel carb has venturi diameter of 1.3/8". There are 2 barrel carbs with 600 cfm and have 1.45 diameter venturi. Looking at the area the 1.378 bore has 5.9 sq. Inch area. The 1.45 dia. has 6.6 sq. inch. 5.9 - 6.6 = 0.70 sq. inch difference. Keeping the 500 cfm carb in place, if I can introduce 0.7 sq inch more area in the intake manifold, will I have the same potential horsepower as a 600 cfm carb provide? Assume I can change jetting to...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top