MHB Graph of $y=\sin{x}-2$ on the domain $[0,2\pi]$

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Graph
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Graph $y=\sin{x}-2$ on the domain $[0,2\pi]$
This is a sample math problem in preparation for the entrance exam for the USAF Academy
Even not asked I thot also the Period, Amplitude, PS and list some observations that should be know to graph without an app

1. we know that sin(0)=0 so sin(x) goes thru origin

$Y_{sin}=A\sin\left[\omega\left(x-\dfrac{\phi}{\omega} \right) \right]+B
\implies A\sin\left(\omega x-\phi \right)+B$
A=Amplitude B=Vertical Shift
T=Period= $\quad\dfrac{2\pi}{\omega}$
PS=Phase Shift $\quad\dfrac{\phi}{\omega}$
ok this get ? at times
and,,,,,
 
Last edited:
Mathematics news on Phys.org
$y = \sin{x} - 2$

just shift $y=\sin{x}$ down 2 units … why are you making it more complicated than necessary?
 
skeeter said:
$y = \sin{x} - 2$

just shift $y=\sin{x}$ down 2 units … why are you making it more complicated than necessary?
well I know this is a very simple one but I get confused on PS and T
A and VS are easy

$A\sin\left(\omega x-\phi \right)+B\implies (1)\sin\left((1) x-(0) \right)+(-2)$

$T=\dfrac{2\pi}{1}=2\pi$
$PS=\quad\dfrac{0}{1}=0$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top