- #1
- 173
- 18
Mathematicians, I summon thee to help me identify which field deals with this stuff. I come here not as a physicist but as a sunday programmer trying to solve some numerical problems.
I set out to model a lattice version of a smooth space. A discretization procedure not uncommon in physics, but there's a catch: every connected point has the same distance. Which essentially breaks everything I knew about lattices. So I'm not putting points on a plane (where each point would have its own coordinates) but making a plane out of points. So each point only has has information about its connectivity with its surroundings. This is closer to graph theory, I believe.
This smells a lot like topology, that's why I came here. Is there a way to retrieve information, like number of dimensions, or even geometrical aspects like curvature, in some limit where this graph/lattice tends to a continuum space? This limit would be an increase in number of points or something like that.
I set out to model a lattice version of a smooth space. A discretization procedure not uncommon in physics, but there's a catch: every connected point has the same distance. Which essentially breaks everything I knew about lattices. So I'm not putting points on a plane (where each point would have its own coordinates) but making a plane out of points. So each point only has has information about its connectivity with its surroundings. This is closer to graph theory, I believe.
This smells a lot like topology, that's why I came here. Is there a way to retrieve information, like number of dimensions, or even geometrical aspects like curvature, in some limit where this graph/lattice tends to a continuum space? This limit would be an increase in number of points or something like that.