MHB Graph y=g(x): Sketch for [0,5] \implies R

  • Thread starter Thread starter Katsa333
  • Start date Start date
  • Tags Tags
    Sketch
Katsa333
Messages
1
Reaction score
0
I don't really know how to start with this question. Please help?

For the function g: [0,5] \implies R, g(x)=(x+3)/(2) (R=Real Numbers)
sketch the graph of y=g(x)
I don't know how the [0,5] \implies R changes the graph.
 
Mathematics news on Phys.org
Katsa333 said:
I don't really know how to start with this question. Please help?

For the function g: [0,5] \implies R, g(x)=(x+3)/(2) (R=Real Numbers)
sketch the graph of y=g(x)
I don't know how the [0,5] \implies R changes the graph.

Hi Katsa333! Welcome to MHB! (Wave)

Properly we have the function $g: [0,5] \to \mathbb R$ given by $g(x)=\frac{x+3}{2}=\frac 12 x + \frac 32$.
The first part does not change the graph, other than defining its domain [0,5], meaning it begins at x=0 and ends at x=5.
The second part is the equation of a line that slopes up by $\frac 12$ when we move $1$ to the right.
And it intercepts the y-axis at $y=\frac 32$.

Now what will the graph look like? (Wondering)
 
Ah! I wondered what "[0, 1] implies R" meant! I like Serena is, correctly I think, taking it to mean that f is a function from [0, 1] to R.

Katsa333, "→" here is NOT "implies", it is simply "to" or "goes to". As I like Serena said, the graph of the equation y= (x+ 3)/2 is a straight line, with slope 1/3 and y-intercept 3/2. Restricting x to [0, 1] means that the graph is only the part of that line that lies above [0, 1] on the x-axis. It is the line segment with endpoints (0, 3/2) and (1, 2).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top