MHB Graph y=g(x): Sketch for [0,5] \implies R

  • Thread starter Thread starter Katsa333
  • Start date Start date
  • Tags Tags
    Sketch
AI Thread Summary
The function g(x) = (x + 3)/2 is defined on the domain [0, 5], indicating that the graph will only be plotted for x values between 0 and 5. The equation represents a straight line with a slope of 1/2 and a y-intercept of 3/2. The graph starts at the point (0, 3/2) and extends to (5, 4). The notation [0, 5] → R signifies that the function maps the interval [0, 5] to real numbers, affecting the graph's domain but not its overall linear nature. The resulting graph is a line segment within the specified range.
Katsa333
Messages
1
Reaction score
0
I don't really know how to start with this question. Please help?

For the function g: [0,5] \implies R, g(x)=(x+3)/(2) (R=Real Numbers)
sketch the graph of y=g(x)
I don't know how the [0,5] \implies R changes the graph.
 
Mathematics news on Phys.org
Katsa333 said:
I don't really know how to start with this question. Please help?

For the function g: [0,5] \implies R, g(x)=(x+3)/(2) (R=Real Numbers)
sketch the graph of y=g(x)
I don't know how the [0,5] \implies R changes the graph.

Hi Katsa333! Welcome to MHB! (Wave)

Properly we have the function $g: [0,5] \to \mathbb R$ given by $g(x)=\frac{x+3}{2}=\frac 12 x + \frac 32$.
The first part does not change the graph, other than defining its domain [0,5], meaning it begins at x=0 and ends at x=5.
The second part is the equation of a line that slopes up by $\frac 12$ when we move $1$ to the right.
And it intercepts the y-axis at $y=\frac 32$.

Now what will the graph look like? (Wondering)
 
Ah! I wondered what "[0, 1] implies R" meant! I like Serena is, correctly I think, taking it to mean that f is a function from [0, 1] to R.

Katsa333, "→" here is NOT "implies", it is simply "to" or "goes to". As I like Serena said, the graph of the equation y= (x+ 3)/2 is a straight line, with slope 1/3 and y-intercept 3/2. Restricting x to [0, 1] means that the graph is only the part of that line that lies above [0, 1] on the x-axis. It is the line segment with endpoints (0, 3/2) and (1, 2).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top