kev said:
Does that seem about right?
My results for proper acceleration agree with yours.
So, using the convention that timelike intervals squared are positive, in Schwarzschild coordinates given by:
(t,r,\theta,\phi)
The line element is:
ds^2=\left(1-\frac{R}{r}\right) c^2 dt^2-\left(1-\frac{R}{r}\right)^{-1}dr^2-r^2 d\theta^2- r^2 \sin ^2(\theta ) d\phi^2
where
R=\frac{2GM}{c^2}
And the metric tensor is:
\mathbf g = \left(<br />
\begin{array}{cccc}<br />
c^2 \left(1-\frac{R}{r}\right) & 0 & 0 & 0 \\<br />
0 & -\left(1-\frac{R}{r}\right)^{-1} & 0 & 0 \\<br />
0 & 0 & -r^2 & 0 \\<br />
0 & 0 & 0 & -r^2 \sin ^2(\theta )<br />
\end{array}<br />
\right)
In this Schwarzschild metric, the Christoffel symbols
\left(<br />
\begin{array}{cccc}<br />
\left\{\Gamma _{t t}^t,\Gamma _{t r}^t,\Gamma _{t \theta }^t,\Gamma _{t\phi<br />
}^t\right\} & \left\{\Gamma _{r t}^t,\Gamma _{r r}^t,\Gamma _{r \theta }^t,\Gamma<br />
_{r \phi }^t\right\} & \left\{\Gamma _{\theta t}^t,\Gamma _{\theta r}^t,\Gamma<br />
_{\theta \theta }^t,\Gamma _{\theta \phi }^t\right\} & \left\{\Gamma _{\phi<br />
t}^t,\Gamma _{\phi r}^t,\Gamma _{\phi \theta }^t,\Gamma _{\phi \phi<br />
}^t\right\} \\<br />
\left\{\Gamma _{t t}^r,\Gamma _{t r}^r,\Gamma _{t \theta }^r,\Gamma _{t \phi<br />
}^r\right\} & \left\{\Gamma _{r t}^r,\Gamma _{r r}^r,\Gamma _{r \theta }^r,\Gamma<br />
_{r \phi }^r\right\} & \left\{\Gamma _{\theta t}^r,\Gamma _{\theta r}^r,\Gamma<br />
_{\theta \theta }^r,\Gamma _{\theta \phi }^r\right\} & \left\{\Gamma _{\phi<br />
t}^r,\Gamma _{\phi r}^r,\Gamma _{\phi \theta }^r,\Gamma _{\phi \phi<br />
}^r\right\} \\<br />
\left\{\Gamma _{t t}^{\theta },\Gamma _{t r}^{\theta },\Gamma _{t \theta }^{\theta<br />
},\Gamma _{t \phi }^{\theta }\right\} & \left\{\Gamma _{r t}^{\theta },\Gamma<br />
_{r r}^{\theta },\Gamma _{r \theta }^{\theta },\Gamma _{r \phi }^{\theta }\right\}<br />
& \left\{\Gamma _{\theta t}^{\theta },\Gamma _{\theta r}^{\theta },\Gamma<br />
_{\theta \theta }^{\theta },\Gamma _{\theta \phi }^{\theta }\right\} &<br />
\left\{\Gamma _{\phi t}^{\theta },\Gamma _{\phi r}^{\theta },\Gamma _{\phi<br />
\theta }^{\theta },\Gamma _{\phi \phi }^{\theta }\right\} \\<br />
\left\{\Gamma _{t t}^{\phi },\Gamma _{t r}^{\phi },\Gamma _{t \theta }^{\phi<br />
},\Gamma _{t \phi }^{\phi }\right\} & \left\{\Gamma _{r t}^{\phi },\Gamma<br />
_{r r}^{\phi },\Gamma _{r \theta }^{\phi },\Gamma _{r \phi }^{\phi }\right\} &<br />
\left\{\Gamma _{\theta t}^{\phi },\Gamma _{\theta r}^{\phi },\Gamma _{\theta<br />
\theta }^{\phi },\Gamma _{\theta \phi }^{\phi }\right\} & \left\{\Gamma _{\phi<br />
t}^{\phi },\Gamma _{\phi r}^{\phi },\Gamma _{\phi \theta }^{\phi },\Gamma<br />
_{\phi \phi }^{\phi }\right\}<br />
\end{array}<br />
\right)
are given by:
\left(<br />
\begin{array}{cccc}<br />
\left\{0,\frac{R}{2 r^2-2 r R},0,0\right\} & \left\{\frac{R}{2 r^2-2 r<br />
R},0,0,0\right\} & \{0,0,0,0\} & \{0,0,0,0\} \\<br />
\left\{\frac{c^2 (r-R) R}{2 r^3},0,0,0\right\} & \left\{0,-\frac{R}{2 r^2-2 r<br />
R},0,0\right\} & \{0,0,R-r,0\} & \left\{0,0,0,(R-r) \sin ^2(\theta )\right\} \\<br />
\{0,0,0,0\} & \left\{0,0,\frac{1}{r},0\right\} & \left\{0,\frac{1}{r},0,0\right\} &<br />
\{0,0,0,-\cos (\theta ) \sin (\theta )\} \\<br />
\{0,0,0,0\} & \left\{0,0,0,\frac{1}{r}\right\} & \{0,0,0,\cot (\theta )\} &<br />
\left\{0,\frac{1}{r},\cot (\theta ),0\right\}<br />
\end{array}<br />
\right)
So, without loss of generality the worldline of a particle at rest in these coordinates is given by:
\mathbf X = (t,r_0,0,0)
Then we can derive the four-velocity as follows:
\mathbf U = \frac{d \mathbf X}{d \tau} = c \frac{d \mathbf X}{ds} = c \frac{d \mathbf X}{dt} \frac{dt}{ds} = c \; (1,0,0,0) \; \frac{1}{\sqrt{c^2 \left(1-\frac{R}{r}\right)}} = \left(\left(1-\frac{R}{r}\right)^{-1/2},0,0,0\right)
And we can verify that the norm of the four-velocity is equal to:
||\mathbf U||^2=U_{\mu} U^{\mu}= g_{\mu\nu} U^{\nu} U^{\mu} = c^2
Now we can derive the four-acceleration as follows:
A^{\mu}=\frac{DU^{\mu}}{d\tau}=\frac{dU^{\mu}}{d\tau}+\Gamma^{\mu}_{\nu\lambda}U^{\nu}U^{\lambda}
\frac{d \mathbf U}{d\tau}= c\frac{d \mathbf U}{ds}= c\frac{d \mathbf U}{dt}\frac{dt}{ds}= c \; (0,0,0,0) \; \frac{dt}{ds}=(0,0,0,0)
There is only one non-zero component of:
\Gamma^{\mu}_{\nu\lambda}U^{\nu}U^{\lambda}=\Gamma^{r}_{tt}U^{t}U^{t}=\frac{c^2 (r-R) R}{2 r^3}
So, substituting back in we obtain the four-acceleration in the Schwarzschild coordinates:
\mathbf A = \left(0,\frac{c^2 R}{2 r^2},0,0\right) = \left(0,\frac{G M}{r^2},0,0\right)
Finally, the norm of the four-acceleration, which is equal to the magnitude of the proper acceleration, is given by:
-||\mathbf A||^2= -A_{\mu} A^{\mu}= -g_{\mu\nu} A^{\nu} A^{\mu} = \frac{c^4 R^2}{4 r^4 (1-R/r)} = \left( \frac{GM}{r^2}\left(1-\frac{2GM}{rc^2}\right)^{-\frac{1}{2}} \right)^2
So this also agrees with your previous result. As expected, the proper acceleration for a particle at rest in the Schwarzschild coordinates goes to infinity as r goes to R and is imaginary for r<R.