- #1
- 462
- 0
What is the path of an object entering the graviational pull starting at a point [tex][x_{0}, y_{0}, z_{0}][/tex] with a velocity [tex][V_{0x}, V_{0y}, V_{0z}][/tex] neglecting air resistance? This is what I have thus far:
[tex]x(t)=x_{0}+V_{0x}*t-g_{x}*t^{2}[/tex]
[tex]y(t)=y_{0}+V_{0y}*t-g_{y}*t^{2}[/tex]
[tex]z(t)=z_{0}+V_{0z}*t-g_{z}*t^{2}[/tex]
where
[tex]g_{x}=\frac{G*M}{r_{x}}[/tex]
[tex]g_{y}=\frac{G*M}{r_{y}}[/tex]
[tex]g_{z}=\frac{G*M}{r_{z}}[/tex]
and the axis projected on the r-axis
[tex]r_{x}=x*cos\theta*sin\phi[/tex]
[tex]r_{y}=y*sin\theta*sin\phi[/tex]
[tex]r_{z}=z*cos\phi[/tex]
After introducing [tex]\theta[/tex] and [tex]\phi[/tex] the whole thing becomes difficult. Is there an easier way?
[tex]x(t)=x_{0}+V_{0x}*t-g_{x}*t^{2}[/tex]
[tex]y(t)=y_{0}+V_{0y}*t-g_{y}*t^{2}[/tex]
[tex]z(t)=z_{0}+V_{0z}*t-g_{z}*t^{2}[/tex]
where
[tex]g_{x}=\frac{G*M}{r_{x}}[/tex]
[tex]g_{y}=\frac{G*M}{r_{y}}[/tex]
[tex]g_{z}=\frac{G*M}{r_{z}}[/tex]
and the axis projected on the r-axis
[tex]r_{x}=x*cos\theta*sin\phi[/tex]
[tex]r_{y}=y*sin\theta*sin\phi[/tex]
[tex]r_{z}=z*cos\phi[/tex]
After introducing [tex]\theta[/tex] and [tex]\phi[/tex] the whole thing becomes difficult. Is there an easier way?