PeterDonis said:
The first one you gave is correct.
Thank you!
So, we have:
$$
\phi(r_E, r_S, v_E, v_S) = 1 - \frac{GM_E}{c^2 r_E} - \frac{GM_S}{c^2 r_S} - \frac{v_E^2}{2 c^2} - \frac{v_S^2}{2 c^2}
$$
where: ##r_E=x##, ##r_S=R-x## (R=Sun-Earth distance), ##v_E=\omega x##, ##v_S=\omega (R-x)## (##\omega## = Earth's angular speed around the Sun)
So, we can write:
$$
\phi(r_E, r_S, v_E, v_S) = \phi(x)= 1 - \frac{GM_E}{x c^2} - \frac{GM_S}{(R-x) c^2} - \frac{(\omega x)^2}{2 c^2} - \frac{(\omega (R-x))^2}{2 c^2}
$$
and
$$
\frac{d \phi(x)} {dx} = \frac{GM_E}{x^2 c^2} - \frac{GM_S}{(R-x)^2 c^2} - \frac{\omega^2 x}{c^2} + \frac{\omega^2 (R-x)}{c^2}
$$
We need ##\frac{d \phi(x)} {dx} = 0##
so
$$
\frac{GM_E}{x^2 c^2} - \frac{GM_S}{(R-x)^2 c^2} - \frac{\omega^2 x}{c^2} + \frac{\omega^2 (R-x)}{c^2}=0
$$
or
$$
\frac{GM_E}{x^2} - \frac{GM_S}{(R-x)^2} - \omega^2 x+ \omega^2 (R-x)=0
$$
or
$$
\frac{GM_S}{(R-x)^2} + \omega^2 x = \frac{GM_E}{x^2} + \omega^2 (R-x)
$$
so x is the place where gravitational and centrifugal forces acting on the clock cancel each other ... Interesting.
The value is: 1,349,811,584 m