I Green's function boundary conditions

Click For Summary
The discussion focuses on the application of Green's identity to derive the potential in terms of the Green's function under specific boundary conditions. It highlights the necessity for the Green's function to satisfy certain conditions for Dirichlet and Neumann boundaries to simplify the integral expression for the potential. The query raised pertains to the mathematical justification for imposing these conditions on the Green's function without introducing inconsistencies. Reference to Jackson's text is made as a source of clarification on this topic. Understanding these requirements is crucial for ensuring the validity of the potential's representation.
deuteron
Messages
64
Reaction score
14
TL;DR
what is the motivation / justification behind the applied conditions on the Green's function for Dirichlet / Neumann boundary conditions
we know that, using the Green's identity ##\iiint\limits_V (\varphi \Delta\psi -\psi \Delta\varphi)\ dV =\iint_{\partial V} (\varphi \frac {\partial \psi}{\partial n}-\psi \frac {\partial\varphi}{\partial n})\ da## and substituting ##\varphi=\phi## and ##\psi=G## here, we can write the potential as:

$$\phi_{\vec r} = \iiint\limits_V \rho_{\vec r_q} G_{\vec r, \vec r_q}\ d^3r_q\ +\ \frac 1 {4\pi}\ [\iint _{\partial V} G_{\vec r, \vec r_q} \frac \partial {\partial n} \phi_{\vec r_q} - \phi_{\vec r_q} \frac{\partial G_{\vec r, \vec r_q}} {\partial n} \ da]$$

here, for the type of given boundary conditions, ( Dirichlet: ##\phi|_{\partial V}=\text{given}## or Neumann ##\frac {\partial \phi}{\partial n}|_{\partial V}=\text{given}##) we require, that the Green's function satisfies some conditions (Dirichlet: ##G|_{\partial V}=0##, Neumann: ##\frac {\partial G}{\partial n} |_{\partial V}=- \frac {4\pi}{\text{surface area of}\ \partial V}##)

I understand that these make our life easier when we substitute the Green's function into the above integral expression for ##\phi##
However, I am confused about *why* we are allowed to make these requirements on the Green's function. How are we mathematically sure that making this requirements would not cause a problem?
 
Physics news on Phys.org
I have found the answer in Jackson, section 1.10 page 18
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
344
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K