Group of translations on real line with discrete topology

xboy
Messages
133
Reaction score
0
Hi.

I wanted to know in what way the group of translations on a real line with discrete topology (let's call it Td) will be different from the group of translations on a real line with the usual topology (lets call it Tu)? Is Td a Lie Group? Will it have the same generator as Tu?
 
Physics news on Phys.org
Note that every self-bijection will be continuous, which is rather boring.

It will still satisfy all the group axioms- they don't depend on topology. It will be a topological group since everything will be continuous. It will be a Lie group, if you count 0-dimensional Lie groups, and it will have uncountably many disconnected components.

All of the above can be said for any group, whether or not it already has a topology. Any group G can be considered a topological group simply by giving it the discrete topology (or a Lie group, albeit a 0-dimensional one).

I don't know what you mean by "the generator of Tu". The real line doesn't have a generator, does it?
 
OK, I didn't phrase that right. What I meant was that the real line has a discrete topology. Now I take the group of translations on it. My question was whether this group would be any different from the group of translations on a (real line with usual topology) and I think that they would be the same.
 
I don't understand your question,
xboy said:
OK, I didn't phrase that right. What I meant was that the real line has a discrete topology.
Yes- everything has a discrete topology.
xboy said:
My question was whether this group would be any different from the group of translations on a (real line with usual topology) and I think that they would be the same.
What are you defining as a "translation"?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 35 ·
2
Replies
35
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K