MHB Group Ring Integral dihedral group with order 6

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Every one, I am having some difficulties with computing an element in the Integral dihedral group with order 6. Some background information for what is a group ring:

A group ring defined as the following from Dummit and Foote:

Fix a commutative ring $R$ with identity $1\ne0$ and let $G=\{g_{1},g_{2},g_{3},...,g_{n}\}$ be any finite group with group operation written multiplicatively. A group ring, $RG$, of $G$ with coefficients in $R$ to be the set of all formal sum

$a_1g_1+a_2g_2+\cdots+a_ng_n$, $a_i\in R$, $1\le i\le n$.
The addition is based on component addition. Multiplication for group ring is defined as $(ag_i)(bg_j)=(ab)g_k$, where the product $ab\in R$ and $g_ig_j=g_k$ is the product in the Group $G$, for the formal sum just add the distributive laws.

Here is question:

Let $G=D_6$ be the dihedral group of order 6 with the usual generators $r$,$s$ ($r^3=s^2=1$ and $rs=sr^{-1}$) and let $R=\Bbb{Z}$. The elements $\alpha=r+r^2-2s$ and $\beta=-3r^2+rs$ are typical members of $\Bbb{Z}D_6$. find the sum and product.
Work:
$\alpha + \beta=r-2r^2-2s+rs$
Here is where the problems are:
\begin{align*}\alpha\beta=&(r+r^2-2s)(-3r^2+rs)\\
&=r(-3r^2+rs)+r^2(-3r^2+rs)-2s(-3r^2+rs)\\
&=-3r^3+r^{2}s-3r^{4}+r^{3}s+6sr^2-2srs
\end{align*}
The end line is where I have trouble with the computations.

Thanks
Cbarker1
 
Physics news on Phys.org
Cbarker1 said:
Here is question:

Let $G=D_6$ be the dihedral group of order 6 with the usual generators $r$,$s$ ($r^3=s^2=1$ and $rs=sr^{-1}$) and let $R=\Bbb{Z}$. The elements $\alpha=r+r^2-2s$ and $\beta=-3r^2+rs$ are typical members of $\Bbb{Z}D_6$. find the sum and product.
Work:
$\alpha + \beta=r-2r^2-2s+rs$
Here is where the problems are:
\begin{align*}\alpha\beta=&(r+r^2-2s)(-3r^2+rs)\\
&=r(-3r^2+rs)+r^2(-3r^2+rs)-2s(-3r^2+rs)\\
&=-3r^3+r^{2}s-3r^{4}+r^{3}s+6sr^2-2srs
\end{align*}
The end line is where I have trouble with the computations.
All that remains is to use the identities $r^3=s^2=1$ and $rs=sr^{-1} = sr^2$ to simplify that last line. For example, $-3r^3 = -3$ (which I would prefer to write as $-3e$ where $e$ is the identity element of $D_6$). Also, $6sr^2 = 6sr^{-1} = 6rs$, and $-2srs = -2s(sr^2) = -2r^2$. In that way, you can write $(r+r^2-2s)(-3r^2+rs)$ as a linear combination of the six elements of $D_6$, which are $e,r,r^2,s,rs,r^2s$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 69 ·
3
Replies
69
Views
8K