Hamiltonian in second quantization

Click For Summary

Discussion Overview

The discussion revolves around the derivation of the Hamiltonian for a simple harmonic oscillator (SHO) transitioning from Hilbert space to Fock space within the context of second quantization. Participants explore the implications of operator ordering and the role of vacuum energy in this derivation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant seeks guidance on deriving the Hamiltonian for a SHO in Fock space, expressing uncertainty about the transition from Hilbert space.
  • Another participant suggests expressing position and momentum operators in terms of creation and annihilation operators and mentions the concept of normal ordering to address vacuum energy contributions.
  • A participant questions why substituting the position and momentum operators expressed in terms of creation and annihilation operators does not yield the 1/2 hbar omega term, unlike the conventional derivation starting from the product of these operators.
  • One reply emphasizes the importance of operator ordering and provides a detailed mathematical derivation involving the squares of the operators to clarify the relationship between the Hamiltonian forms.
  • Another participant advises against using images for equations, recommending the use of the forum's LaTeX feature for clarity.

Areas of Agreement / Disagreement

Participants express differing views on the implications of operator ordering and the treatment of vacuum energy, indicating that the discussion remains unresolved regarding the best approach to derive the Hamiltonian in this context.

Contextual Notes

There are unresolved aspects regarding the assumptions made in operator ordering and the definitions of energy levels, which may affect the interpretations of the Hamiltonian forms discussed.

hello_world30
Messages
4
Reaction score
0
TL;DR
Proving Hamiltonian of a simple harmonic oscillator in second quantization
Hello ! I require some guidance on this prove :
IMG_1316.jpg
I normally derive the Hamiltonian for a SHO in Hilbert space with a term of 1/2 hbar omega included. However, I am unsure of how one derives this from Hilbert space to Fock space. I have attached my attempt at it as an image below. Any input will be of great help. Cheers.
IMG_1318.jpg
 

Attachments

  • IMG_1316.jpg
    IMG_1316.jpg
    10.7 KB · Views: 256
Physics news on Phys.org
You just have to express ##\hat{x}## and ##\hat{p}## in terms of the operators ##\hat{a}## and ##\hat{a}^{\dagger}## and subtract, without essentially changing the physics, the vacuum-energy contribution by "normal ordering".

In this case of a single harmonic oscillator your "Fock space" is just the single-particle Hilbert space you started with, and there is no "2nd quantization done". This you achieve by quantizing the Schrödinger field, leading to a real Fock space.
 
  • Like
Likes   Reactions: PeroK and hello_world30
vanhees71 said:
You just have to express ##\hat{x}## and ##\hat{p}## in terms of the operators ##\hat{a}## and ##\hat{a}^{\dagger}## and subtract, without essentially changing the physics, the vacuum-energy contribution by "normal ordering".

In this case of a single harmonic oscillator your "Fock space" is just the single-particle Hilbert space you started with, and there is no "2nd quantization done". This you achieve by quantizing the Schrödinger field, leading to a real Fock space.
IMG_1319.jpg
IMG_1320.jpg


Thank you for your prompt reply. Why is it that if I substitute x and p operators that are exressed in terms of a and a^(+) into the Hamiltonian , it does not have the 1/2 hbar omega term, but when I use the conventional way of deriving the Hamiltonian (starting from aa^+) then I get a Hamiltonian with 1/2 hbar omega ?
 
You must be more careful with operator ordering! You should get the last equation on your scanned calculations (BTW, it's much less work and better for the forum to use the built-in LaTeX feature. Click the LaTeX guide (link at the left directly under the text editor):

https://www.physicsforums.com/help/latexhelp/

Concerning the calculation, note that
$$(\hat{a}-\hat{a}^{\dagger})^2=\hat{a}^2 - \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a}+ \hat{a}^{\dagger 2}$$
and
$$(\hat{a}+\hat{a}^{\dagger})^2=\hat{a}^2 + \hat{a} \hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{a} + \hat{a}^{\dagger 2}.$$
From that you get
$$(\hat{a}+\hat{a}^{\dagger})^2-(\hat{a}-\hat{a}^{\dagger})^2=2 (\hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{a})=2([\hat{a},\hat{a}^{\dagger}]+2 \hat{a}^{\dagger} \hat{a}]=4 \left (\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$
Plugging this into your equation for the Hamiltonian, you get your final equation (1),
$$\hat{H}=\hbar \omega \left (\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$
The additive piece ##\hbar \omega/2 \hat{1}## is just a constant operator commuting with everything, and just counting the energy of the ground state as zero, you get the equivalent Lagrangian
$$\hat{H}'=\hbar \omega \hat{a}^{\dagger} \hat{a},$$
which describes the same physics as the original Hamiltonian, except that your zero level for energy is shifted.
 
@hello_world30 please do not enter your equations as images. Use the PF LaTeX feature to enter them directly into your post. (You will see a "LaTeX Guide" link at the lower left of the post window.)
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K