A Hamiltonian in second quantization

hello_world30
Messages
4
Reaction score
0
TL;DR Summary
Proving Hamiltonian of a simple harmonic oscillator in second quantization
Hello ! I require some guidance on this prove :
IMG_1316.jpg
I normally derive the Hamiltonian for a SHO in Hilbert space with a term of 1/2 hbar omega included. However, I am unsure of how one derives this from Hilbert space to Fock space. I have attached my attempt at it as an image below. Any input will be of great help. Cheers.
IMG_1318.jpg
 

Attachments

  • IMG_1316.jpg
    IMG_1316.jpg
    10.7 KB · Views: 242
Physics news on Phys.org
You just have to express ##\hat{x}## and ##\hat{p}## in terms of the operators ##\hat{a}## and ##\hat{a}^{\dagger}## and subtract, without essentially changing the physics, the vacuum-energy contribution by "normal ordering".

In this case of a single harmonic oscillator your "Fock space" is just the single-particle Hilbert space you started with, and there is no "2nd quantization done". This you achieve by quantizing the Schrödinger field, leading to a real Fock space.
 
  • Like
Likes PeroK and hello_world30
vanhees71 said:
You just have to express ##\hat{x}## and ##\hat{p}## in terms of the operators ##\hat{a}## and ##\hat{a}^{\dagger}## and subtract, without essentially changing the physics, the vacuum-energy contribution by "normal ordering".

In this case of a single harmonic oscillator your "Fock space" is just the single-particle Hilbert space you started with, and there is no "2nd quantization done". This you achieve by quantizing the Schrödinger field, leading to a real Fock space.
IMG_1319.jpg
IMG_1320.jpg


Thank you for your prompt reply. Why is it that if I substitute x and p operators that are exressed in terms of a and a^(+) into the Hamiltonian , it does not have the 1/2 hbar omega term, but when I use the conventional way of deriving the Hamiltonian (starting from aa^+) then I get a Hamiltonian with 1/2 hbar omega ?
 
You must be more careful with operator ordering! You should get the last equation on your scanned calculations (BTW, it's much less work and better for the forum to use the built-in LaTeX feature. Click the LaTeX guide (link at the left directly under the text editor):

https://www.physicsforums.com/help/latexhelp/

Concerning the calculation, note that
$$(\hat{a}-\hat{a}^{\dagger})^2=\hat{a}^2 - \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a}+ \hat{a}^{\dagger 2}$$
and
$$(\hat{a}+\hat{a}^{\dagger})^2=\hat{a}^2 + \hat{a} \hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{a} + \hat{a}^{\dagger 2}.$$
From that you get
$$(\hat{a}+\hat{a}^{\dagger})^2-(\hat{a}-\hat{a}^{\dagger})^2=2 (\hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{a})=2([\hat{a},\hat{a}^{\dagger}]+2 \hat{a}^{\dagger} \hat{a}]=4 \left (\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$
Plugging this into your equation for the Hamiltonian, you get your final equation (1),
$$\hat{H}=\hbar \omega \left (\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$
The additive piece ##\hbar \omega/2 \hat{1}## is just a constant operator commuting with everything, and just counting the energy of the ground state as zero, you get the equivalent Lagrangian
$$\hat{H}'=\hbar \omega \hat{a}^{\dagger} \hat{a},$$
which describes the same physics as the original Hamiltonian, except that your zero level for energy is shifted.
 
@hello_world30 please do not enter your equations as images. Use the PF LaTeX feature to enter them directly into your post. (You will see a "LaTeX Guide" link at the lower left of the post window.)
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...

Similar threads

Replies
4
Views
3K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
5
Views
3K
Replies
67
Views
11K
Replies
0
Views
1K
Back
Top