On a positive note, you have all of the math ability to do cosmology. To get to the point where you are able to do useful cosmology work looks like just a matter of taking a course in cosmology, and that can be done in two months...
The two things that you are missing are:
1) knowledge about what the data is
2) knowledge about what has been tried and what is being tried
The good news is to get that knowledge will take you two to three months at the most.
The problem with what you are suggesting is that it has a "been there done that." What you are suggesting is "tired light". It's a model that was done in the 1960's and 1970's and there are a lot of nails in the coffin. In particular once you assume that light behaves in a certain way, lots of things start breaking...
http://en.wikipedia.org/wiki/Tired_light will start, and there are a number of review papers on non-standard cosmologies that will tell you wants wrong with them. Also with enough duct tape and pixie dust, you can get any model to work, but the goal is to get something to work with less duct tape and pixie dust than the current models.
One way out of the mess is to just assume "magic." There is something that magically adds pressure to the universe, but we don't know what it is. At that point we just call it dark energy and you end up where we are not.
The other thing you just can't do is make statements like...
Instead of v=cz , I have v=cz/(z+1) and D=cz/H(z+1).
You just can't do that without some justification. The behavior of distance and velocity come out of GR, and if you start messing with them, then you are saying that GR is invalid. That's not a crazy thing to say, but you have to say it. Once you claim that GR is invalid, then you have to come up with some alternative gravity theory, and there is an industry that is doing that.
Also something you have to realize is that when talking about supernova measurements, people really aren't talking about "distance" and "velocity". When people graph supernova measurements the lower axis is actually a "brightness." When people talk about "distance" in the context of supernova, they are talking about "the number that you get if you assume that 1/r^2 is true which we know that it isn't". When talking about redshift, they are talking about the size of the doppler effect.
One problem with GR is that there is no unique definition of distance or velocity at large distances, so you have to *define* what you mean by distance and velocity. You can come up with a definition of distance and velocity in which the Hubble law is perfectly true throughout the universe, but the tricky part is when you relate your definition to particular experiments.