MHB Have you tried using the double angle formula for cosine?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Please consider the following equation:

$\displaystyle \sum_{k=1}^{n}\cos^4\left(\frac{k\pi}{2n+1} \right)=\frac{6n-5}{16}$

For this particular equation, which I am trying to prove is true, I have found no way to crack it, even if I let $n=2$ and begin to try to combine the terms together, I end up with the annoying terms $\displaystyle \sin \frac {\pi}{10}$ and $\displaystyle \cos \frac {\pi}{10}$ and I am quite certain that this is not the way to go.

I have referred back to Opalg's great posts at this site to search for ideas, but also to no avail...

Any suggestions are welcome to help me to work this problem.

Thanks in advance.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Please consider the following equation:

$\displaystyle \sum_{k=1}^{n}\cos^4\left(\frac{k\pi}{2n+1} \right)=\frac{6n-5}{16}$

For this particular equation, which I am trying to prove is true, I have found no way to crack it, even if I let $n=2$ and begin to try to combine the terms together, I end up with the annoying terms $\displaystyle \sin \frac {\pi}{10}$ and $\displaystyle \cos \frac {\pi}{10}$ and I am quite certain that this is not the way to go.

I have referred back to Opalg's great posts at this site to search for ideas, but also to no avail...

Any suggestions are welcome to help me to work this problem.

Thanks in advance.


Hi anemone, :)

Here's a method that I thought of. This may not be the most elegant method however. :)

Use the power reduction formula for the cosine inside the summation.

\[\sum_{k=1}^{n}\cos^4\theta = \sum_{k=1}^{n}\left(\frac{3 + 4 \cos 2\theta + \cos 4\theta}{8}\right)=\frac{3}{8}\sum_{k=1}^{n}1+ \frac{1}{2}\sum_{k=1}^{n}\cos{2\theta}+\frac{1}{8}\sum_{k=1}^{n}\cos{4\theta}\]

where \(\displaystyle\theta=\frac{k\pi}{2n+1}.\)

Then use Lagrange's trigonometric identity for each summation.

Kind Regards,
Sudharaka.
 
Hi Sudharaka,

Wow, your suggestion works great!(Smile)

Thank you so much!:D

-anemone
 
anemone said:
Hi Sudharaka,

Wow, your suggestion works great!(Smile)

Thank you so much!:D

-anemone

You are welcome! Nice to hear that it works; I never actually tried it. :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top