RandallB said:
So what you are saying is first use two frames inappropriately to give the appearance of FTL backwards time travel by tachyons.
There is nothing inappropriate about it. If the first postulate is true, it must be possible for a tachyon signal to be received at an earlier time-coordinate than it was sent, in
any inertial frame. Let's go to your objection to this logic:
JesseM said:
1. Do you agree that the first postulate of relativity demands that any experiment that gives certain results in one frame (in terms of that frame's coordinates), if replicated in any other frame, must give identical results (in terms of the new frame's coordinates)?
RandallB said:
No one has complained about that – at least I certainly have not.
Just to be clear, when I say "same experiment", I mean that whatever the coordinates of events that take place in the first experiment as seen in the first frame, one can run a second experiment such that identical events happen at the same coordinates in the second frame. For instance, suppose in frame A you have a clock which starts at position x=5 light-seconds, t=10 seconds with the clock reading T=30 seconds, and the clock is moving at 0.8c in the +x direction of frame A so it'll be at position x=13 light-seconds at time t=20 seconds, and because of time dilation it only reads T=36 seconds at that point. Do you agree that the first postulate automatically implies we can have a
different clock moving at 0.8c in the +x' direction of frame B, which starts out reading T=30 seconds at x'=5 light-seconds and t'=10 seconds (in the x', t' coordinates of frame B), and then it must be true that the clock will read T=36 seconds at coordinates x'=13 light-seconds and time t'=20 seconds? If so, do you agree that any experiment in frame A can be replicated in this way in frame B, and vice versa?
JesseM said:
2. Do you agree, therefore, that if you can run an experiment that in one frame will result in a signal being received before it was sent (in terms of the time-coordinates that frame assigns to the events of the signal being sent and the signal being received),
RandallB said:
Agree therefore? What therefore, Of course not!
And you have never done so.
Frame A has all Clocks in sync no matter how far away.
When a clock 20 LY away receives a tachyon in only 10 yr it will still be LATER not before a time Zero start.
This is true as long as the tachyon signal was moving forwards in time in frame A. But do you agree that if we analyze this same signal in frame B, the event of the signal being received can happen at an earlier time-coordinate than it was sent, in the coordinates of frame B? For example, suppose in frame A the coordinates of it being sent were x=0 light-years, t=0 years and the coordinates of it being sent were x=20 light-years, t=10 years. Now suppose frame B is moving at v=0.8c in the +x direction of frame A, so gamma=1.25, giving the Lorentz transformation:
x' = 1.25*(x - v*t)
t' = 1.25*(t - vx/c^2)
This transformation assumes the origins coincide, so the event of it being sent in frame B has coordinates (x'=0, t'=0). As for the event of the signal being received, we can plug in x=20 ly, t=10 y to get:
x' = 1.25*(20 - 0.8*10) = 15
t' = 1.25*(10 - 0.8*20) = -7.5
So in frame B the event of it being sent happened at t'=0 while the event of it being received happened at t'=-7.5, which is 7.5 years earlier in this frame's time-coordinates.
So if you agreed with my statement earlier about the first postulate implying that whatever the events of an experiment seen in one frame (like frame B), we can create a different experiment which will give all the same coordinates in a different frame (like frame A), then do you deny that this implies that in frame A we should be able to create a
different tachyon experiment where the event of the signal being sent happens at x=0, t=0 and the event of the signal being received happens at x=15, t=-7.5? If you do deny this, can you explain your reasoning?
RandallB said:
But that is exactly what the A Frame reference you picked expects – the fast moving Rabbit Frame has all their clocks WRONG, out of sync, and running SLOW.
You cannot look at a Clock SR has already defined as wrong wrt to the frame your using and call it real without breaking a SR rule. I don’t understanding why you kept pushing the fantasy.
You are confused if you think solving an SR problem involves declaring one frame "wrong" and another "right". As I said in my last post to you, they are simply different
conventions about how to label events, analogous to using kilometers vs. miles. With units you can't get them mixed up--for instance, if you want the difference in speed between two objects you can't use kilometers/second for one and miles/second for the other--but you don't declare either right or wrong, and during the course of a problem using the metric system you can certainly make reference to other units, like saying "I know the distance between the two points was 10 miles, therefore it must be 16.09 kilometers". It's the same with SR, where during the course of solving a problem in frame A you're free to make reference to other frames, like saying "I know the object is 10 light-seconds long in its own rest frame, and it's moving at 0.8c in frame A, so in frame A it must be 6 light-seconds long". As long as you don't try to plug in measurements/coordinates from frame B in a calculation where you're
supposed to use measurements/coordinates from frame A, there's no problem with juggling between talking about the way the same events look in different frames over the course of a single problem, and if you look at a relativity textbook you can see they do this sort of juggling routinely, to give students better intuitions about how the same phenomena can look different in different frames.