- #1
- 306
- 5
Posted this on the Astrophysics page but I think it is more appropriate here...
Last night in my calculus class I learned about radioactive decay, a nice example using radium. I was taught that the smaller the mass, the slower the rate of decay (or at least that's what I absorbed, I still have to go over my notes again. Or does the rate not change, but the time it takes to decay is longer?). Does hawking radiation act in the opposite way? that the smaller the mass the faster the rate of decay? (and like above, I'm a bit confused if the rate of decay changes or remains constant, but perhaps just the mass decays faster).
As you can see I'm just looking for some clarification as I'm new to this stuff, so be gentle :)
Last night in my calculus class I learned about radioactive decay, a nice example using radium. I was taught that the smaller the mass, the slower the rate of decay (or at least that's what I absorbed, I still have to go over my notes again. Or does the rate not change, but the time it takes to decay is longer?). Does hawking radiation act in the opposite way? that the smaller the mass the faster the rate of decay? (and like above, I'm a bit confused if the rate of decay changes or remains constant, but perhaps just the mass decays faster).
As you can see I'm just looking for some clarification as I'm new to this stuff, so be gentle :)