MHB Hayldiburasomas' question via email about Secant Method

Click For Summary
The discussion focuses on using the Secant Method to approximate a solution for the equation sin(1.8x) = (1/2)x^2 - 10, with initial estimates x0 = 4.43 and x1 = 4.63. The equation is reformulated as f(x) = (1/2)x^2 - 10 - sin(1.8x) to apply the method. The Secant Method formula is utilized to perform three iterations, leading to an approximate solution of x4 = 4.66053. The results from the calculations align with those obtained from a calculator. The discussion highlights the effectiveness of the Secant Method in finding numerical solutions.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Use three iterations of the Secant Method to find an approximate solution of the equation

$\displaystyle \sin{\left( 1.8\,x \right) } =\frac{1}{2}\,x^2 - 10 $

if your initial estimates are $\displaystyle x_0 = 4.43 $ and $\displaystyle x_1 = 4.63 $.

The Secant Method is a numerical scheme to solve equations of the form $\displaystyle f\left( x \right) = 0 $, so we must rewrite the equation as $\displaystyle 0 = \frac{1}{2}\,x^2 - 10 - \sin{ \left( 1.8\,x \right) } $.

Thus $\displaystyle f\left( x \right) = \frac{1}{2}\,x^2 - 10 - \sin{ \left( 1.8\,x \right) } $.

The Secant Method is $\displaystyle x_{n+1} = x_n - f\left( x_n \right) \left[ \frac{x_n - x_{n-1}}{f\left( x_n \right) - f\left( x_{n-1}\right) } \right] $.

I have used my CAS to solve this problem.

View attachment 9651

View attachment 9652

So after three iterations your solution is approximately $\displaystyle x_4 = 4.66053 $.

I also included the calculator's answer, which matches.
 

Attachments

  • sm1.jpg
    sm1.jpg
    27.3 KB · Views: 143
  • sm2.jpg
    sm2.jpg
    27.2 KB · Views: 121
Mathematics news on Phys.org
Thanks for the help and support as usual Hayden!
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K