MHB Hayldiburasomas' question via email about Secant Method

AI Thread Summary
The discussion focuses on using the Secant Method to approximate a solution for the equation sin(1.8x) = (1/2)x^2 - 10, with initial estimates x0 = 4.43 and x1 = 4.63. The equation is reformulated as f(x) = (1/2)x^2 - 10 - sin(1.8x) to apply the method. The Secant Method formula is utilized to perform three iterations, leading to an approximate solution of x4 = 4.66053. The results from the calculations align with those obtained from a calculator. The discussion highlights the effectiveness of the Secant Method in finding numerical solutions.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Use three iterations of the Secant Method to find an approximate solution of the equation

$\displaystyle \sin{\left( 1.8\,x \right) } =\frac{1}{2}\,x^2 - 10 $

if your initial estimates are $\displaystyle x_0 = 4.43 $ and $\displaystyle x_1 = 4.63 $.

The Secant Method is a numerical scheme to solve equations of the form $\displaystyle f\left( x \right) = 0 $, so we must rewrite the equation as $\displaystyle 0 = \frac{1}{2}\,x^2 - 10 - \sin{ \left( 1.8\,x \right) } $.

Thus $\displaystyle f\left( x \right) = \frac{1}{2}\,x^2 - 10 - \sin{ \left( 1.8\,x \right) } $.

The Secant Method is $\displaystyle x_{n+1} = x_n - f\left( x_n \right) \left[ \frac{x_n - x_{n-1}}{f\left( x_n \right) - f\left( x_{n-1}\right) } \right] $.

I have used my CAS to solve this problem.

View attachment 9651

View attachment 9652

So after three iterations your solution is approximately $\displaystyle x_4 = 4.66053 $.

I also included the calculator's answer, which matches.
 

Attachments

  • sm1.jpg
    sm1.jpg
    27.3 KB · Views: 140
  • sm2.jpg
    sm2.jpg
    27.2 KB · Views: 118
Mathematics news on Phys.org
Thanks for the help and support as usual Hayden!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top