Heat of Formation: Solve Ethylene C2H4 Combustion

  • Thread starter Thread starter moxy
  • Start date Start date
  • Tags Tags
    Formation Heat
Click For Summary
SUMMARY

The combustion of ethylene (C2H4) releases 1297 kJ/mol of heat, calculated using bond energies. The balanced reaction is C2H4 + 3O2 -> 2H2O + 2CO2. The heat of formation is determined by subtracting the total energy of bonds formed in the products from the total energy of bonds broken in the reactants. Key bond energies include C−H (413 kJ/mol), C=C (614 kJ/mol), O−H (463 kJ/mol), and C=O (799 kJ/mol).

PREREQUISITES
  • Understanding of bond energies and their units (kJ/mol)
  • Familiarity with the concept of enthalpy change (ΔH)
  • Knowledge of chemical reaction balancing
  • Ability to interpret Lewis structures for molecular bonding
NEXT STEPS
  • Study the concept of bond dissociation energies in detail
  • Learn how to calculate enthalpy changes using Hess's Law
  • Explore the application of bond energies in different types of combustion reactions
  • Investigate the role of Lewis structures in predicting molecular behavior
USEFUL FOR

Chemistry students, educators, and professionals involved in thermodynamics and reaction energetics will benefit from this discussion.

moxy
Messages
40
Reaction score
0

Homework Statement



This is a question from a sample exam that I can't figure out. The answer is 1297 kJ/mol, but I don't know how to solve it. Any help is appreciated.

-----

The following are average bond energies (kJ/mol):
C−H 413 O−H 463 C=C 614
C−C 348 O−O 146 C=O 799
C−O 358 O2 495

What is the amount of heat released in the complete combustion of ethylene, H2C=CH2?

Homework Equations



H(reaction) = H(products) - H(reactants)

The Attempt at a Solution



I've written the balanced equation...

C2H4 + 3O2 -> 2H2O + 2CO2

Now, I think I need to break down the reaction and add all of the energies from broken bonds (reactants) together, and then subtract that sum from the energy released from bonds made (products).

Hf of reactants :
C2H4 -> one C=C bond, four C-H bonds = (614 + 4*413) = 2266 kJ/mol * 1mol = 2266 kJ
O2 -> this is an element in its normal state, so the enthalpy is zero

Hf of products :
H2O -> two O-H bonds = (2*463) = 926 kJ/mol * 2mol = 1852 kJ
CO2 -> two C=O bonds = (2*799) = 1598 kJ/mol * 2mol = 3196 kJI continued like this, but the answer I got was wrong. Am I completely off base? I have a feeling I'm misunderstanding the question and approaching it in the wrong way.
 
Physics news on Phys.org
This is the raw equation I got [4(413)+614+3(495)]-[4(463)+4(799)]=-1297 kJ/mol

I'm pretty sure its going to be negative because its Change in H formation=D(reactant bonds)-D(product bonds).

"Hf of products :
H2O -> two O-H bonds = (2*463) = 926 kJ/mol * 2mol = 1852 kJ
CO2 -> two C=O bonds = (2*799) = 1598 kJ/mol * 2mol = 3196 kJ"

In your original equation there are two O-H bonds "per H2O molecule." But you have 2 H2O molecules, so you'll have 4 O-H bonds. Also, drawing Lewis diagrams help.

C2H4 + 3O2 -> 2H2O + 2CO2
So [(4(C−H)+C=C+3(O=O))-(4(O−H)+4(C=O))]
 
kuahji said:
This is the raw equation I got [4(413)+614+3(495)]-[4(463)+4(799)]=-1297 kJ/mol

I'm pretty sure its going to be negative because its Change in H formation=D(reactant bonds)-D(product bonds).

"Hf of products :
H2O -> two O-H bonds = (2*463) = 926 kJ/mol * 2mol = 1852 kJ
CO2 -> two C=O bonds = (2*799) = 1598 kJ/mol * 2mol = 3196 kJ"

In your original equation there are two O-H bonds "per H2O molecule." But you have 2 H2O molecules, so you'll have 4 O-H bonds. Also, drawing Lewis diagrams help.

C2H4 + 3O2 -> 2H2O + 2CO2
So [(4(C−H)+C=C+3(O=O))-(4(O−H)+4(C=O))]
I multiplied by 2 mol...so I think all of my numbers are the same as yours, I just never used the value for O2 (a huge duh on my part). I guess I thought that the "zero enthalpy" applied because O2 (g) is oxygen's natural state at room temperature.

This was a HUGE help, this problem has been eating up my time all night, and I'm so glad to finally understand where I was going wrong! Thanks!
 
kuahji said:
This is the raw equation I got [4(413)+614+3(495)]-[4(463)+4(799)]=-1297 kJ/mol

I'm pretty sure its going to be negative because its Change in H formation=D(reactant bonds)-D(product bonds).

"Hf of products :
H2O -> two O-H bonds = (2*463) = 926 kJ/mol * 2mol = 1852 kJ
CO2 -> two C=O bonds = (2*799) = 1598 kJ/mol * 2mol = 3196 kJ"

In your original equation there are two O-H bonds "per H2O molecule." But you have 2 H2O molecules, so you'll have 4 O-H bonds. Also, drawing Lewis diagrams help.

C2H4 + 3O2 -> 2H2O + 2CO2
So [(4(C−H)+C=C+3(O=O))-(4(O−H)+4(C=O))][/QUOTE]

This helped because I didnt get the same answer yours but I figured my mistake though.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
40K
  • · Replies 1 ·
Replies
1
Views
5K