- #1

- 40

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- B
- Thread starter DannyTr
- Start date

In summary: However, this does not mean that each individual toss will have a 50/50 chance of landing on heads or tails. The HUP works in a similar way, where the expected values of position and momentum will have a certain range, but each individual measurement may not fall within that range. In summary, the HUP is a statistical law that does not directly govern repeated measurements on a single particle, but rather describes the expected range of values for position and momentum measurements on a large set of identically prepared particles.

- #1

- 40

- 0

Physics news on Phys.org

- #2

- 26,606

- 18,165

DannyTr said:

The HUP (Heisenberg Uncertainty Principle) is a statistical law. In the equation:

##\sigma_x \sigma_p \ge \frac{\hbar}{2}##

The ##\sigma## represents the standard deviation of a set of measurements on a large set of identically prepared particles. If the particle is in a state where there is little variation in the expected value of position measurements, then the HUP says that there must be a large variation in the expected value of momentum measurements, and vice versa.

If you measure the position of a particle very accurately, there is nothing to stop you immediately measuring its momentum very accurately. But, what the HUP says, is that if you repeated this experiment many times from the same starting state, then the

The HUP, therefore, says nothing about how precisely you can measure position and momentum, but does say something about the range of expected values you will get.

- #3

- 40

- 0

PeroK said:The HUP (Heisenberg Uncertainty Principle) is a statistical law. In the equation:

##\sigma_x \sigma_p \ge \frac{\hbar}{2}##

The ##\sigma## represents the standard deviation of a set of measurements on a large set of identically prepared particles. If the particle is in a state where there is little variation in the expected value of position measurements, then the HUP says that there must be a large variation in the expected value of momentum measurements, and vice versa.

If you measure the position of a particle very accurately, there is nothing to stop you immediately measuring its momentum very accurately. But, what the HUP says, is that if you repeated this experiment many times from the same starting state, then therangeof momentum measurements you get would be large. There is the difference between an accurate or precise measurement of momentum and a large variation in the (precise) expected momentum measurements.

The HUP, therefore, says nothing about how precisely you can measure position and momentum, but does say something about the range of expected values you will get.

- I mean repeat the measurement many times for a SINGLE PARTICLE:

- The particle is measured in instrument 1.

- The particle deflects and is measured by instrument 2.

- And so on until a to arbitrary precision for both the original position and momentum are in obtained via trigonometry

- #4

- 26,606

- 18,165

DannyTr said:- I mean repeat the measurement many times for a SINGLE PARTICLE:

- The particle is measured in instrument 1.

- The particle deflects and is measured by instrument 2.

- And so on until a to arbitrary precision for both the original position and momentum are in obtained via trigonometry

The position and momentum of a particle are, however, affected by the measurement process. So, you only get one chance for the particle in its original state. As soon as you make one measurement, it is no longer in its original state.

Also, to reemphasise, the HUP is a statistical law, so does not directly govern repeated measurements on a single particle.

- #5

- 40

- 0

PeroK said:The position and momentum of a particle are, however, affected by the measurement process. So, you only get one chance for the particle in its original state. As soon as you make one measurement, it is no longer in its original state.

Also, to repeat, the HUP is a statistical law, so does not directly govern repeated measurements on a single particle.

- I know you only get one initial measurement but taking a 2nd measurement after the particle deflects from the first gives you the angle of deflection which is going to narrow uncertainty over position and momentum

- #6

- 26,606

- 18,165

DannyTr said:- I know you only get one initial measurement but taking a 2nd measurement after the particle deflects from the first gives you the angle of deflection which is going to narrow uncertainty over position and momentum

... you're not listening.

The HUP is a statistical law. It says nothing about repeated measurements on a single particle.

The HUP is a statistical law. It says nothing about repeated measurements on a single particle.

The HUP is a statistical law. It says nothing about repeated measurements on a single particle.

...

Your example is like tossing a coin and, because it doesn't come up half-heads and half-tails, declaring that the probability theory that predicts 50% heads and 50% tails is violated.

- #7

- 26,606

- 18,165

DannyTr said:- I know you only get one initial measurement but taking a 2nd measurement after the particle deflects from the first gives you the angle of deflection which is going to narrow uncertainty over position and momentum

Also, according to QM, a particle does not have a position or momentum. You cannot talk about the original position and momentum. You can only talk about the state of a particle, which implies the probabilities of getting different values of position and momentum if you carry out a measurement.

The uncertainty about a particle, therefore, goes much deeper than simply not knowing its position and momentum. It does not have a position or momentum until you carry out a measurement.

- #8

- 40

- 0

If it is in fact possible to collect more information simultaneously about a particle than the HUP says is that not something worth knowing?

- #9

- 26,606

- 18,165

DannyTr said:But I thought people took the HUP as a Fundamental resolution limit?

Yes, many people do. And they are all wrong.

DannyTr said:If it is in fact possible to collect more information simultaneously about a particle than the HUP says is that not something worth knowing?

The state of a particle tells you everything (simultaneously) about the position and momentum of a particle. But, what it tells you is the probabilities of getting certain measured values. The HUP is a relation between these probabilities.

In that sense, there is nothing more to know.

Last edited:

- #10

Science Advisor

Gold Member

- 8,055

- 1,847

DannyTr said:But I thought people took the HUP as a Fundamental resolution limit?

Yes, it is fundamental (although you can also consider it as derived from fundamental considerations as well). And although it is in fact a statistical limit, as already mentioned, there are direct physical issues around this you may not be aware of that apply to a single particle. Specifically: if you know with great certainty observable X on a particle, and then measure NON-COMMUTING observable Y on the same particle with great precision/certainty: its X observable is now equally UNCERTAIN. So it will now have a random value of X observable. What have you really learned? Always just one thing or the other, never both at the same time.

Note that the HUP does not constrain commuting observables.

- #11

- 26,606

- 18,165

DrChinese said:Yes, it is fundamental (although you can also consider it as derived from fundamental considerations as well). And although it is in fact a statistical limit, as already mentioned, there are direct physical issues around this you may not be aware of that apply to a single particle. Specifically: if you know with great certainty observable X on a particle, and then measure NON-COMMUTING observable Y on the same particle with great precision/certainty: its X observable is now equally UNCERTAIN. So it will now have a random value of X observable. What have you really learned? Always just one thing or the other, never both at the same time.

Note that the HUP does not constrain commuting observables.

The thing to avoid, as I know you know, is to see the HUP as a constraint on the measurement itself. That the HUP prevents a precise measurement in some way. That if you follow a precise measurement of position with a measurement of momentum, then the measurement of momentum is imprecise or constrained in some way. Instead its the measurement value that is "uncertain" in the sense that it can inherently take a wide range of values.

- #12

Science Advisor

Gold Member

- 8,055

- 1,847

PeroK said:The thing to avoid, as I know you know, is to see the HUP as a constraint on the measurement itself. That the HUP prevents a precise measurement in some way.

Of course I agree. And hopefully the OP won't read what I said as implying a limitation on the precision of any single measurement. Theoretically, there is nothing particularly limiting us on that score past technology.

What I hope Danny walks away with is the idea that a very certain measurement of one observable (say B) renders its non-commuting sibling observable (say A) completely indefinite. By indefinite I mean: A has no specific value, and if A is subsequently measured, the newly measured value of A would have nothing more than a random relationship to any previously measured value of A.

I would contrast that with even more follow-on measurements of A, all of which could potentially continue to yield the same definite value. Therefore: measurements in and of themselves to not force a quantum observable to change.

- #13

Gold Member

- 177

- 100

PeroK said:The thing to avoid, as I know you know, is to see the HUP as a constraint on the measurement itself. That the HUP prevents a precise measurement in some way. That if you follow a precise measurement of position with a measurement of momentum, then the measurement of momentum is imprecise or constrained in some way. Instead its the measurement value that is "uncertain" in the sense that it can inherently take a wide range of values.

No, it's a constraint on what there is to measure. The rules "nature" uses to measure thing are the same as ours.

- #14

- 25

- 8

- #15

- 24,492

- 15,004

The Heisenberg uncertainty relation, which reads in its most general form

$$\Delta A \Delta B \geq |\langle \mathrm{i} [\hat{A},\hat{B}] \rangle|,$$

where ##A## and ##B## are arbitrary observables, ##\Delta A## and ##\Delta B## the standard deviations when these observables are measured on an ensemble representing an arbitrary quantum state ##\hat{\rho}##. All averages, i.e., to evaluate the standard deviations and the expectation value on the right-hand side have to be taken with respect to this prepared state, represented by the Statistical Operator ##\hat{\rho}##. Thus the uncertainty relations are a statement about the possibility to prepare a quantum system in any quantum state possible. It doesn't tell you anything about the possibility to measure the observables on an ensemble nor about the influence of the measurement apparatus on the system, which of course cannot be generally stated, but depends on the details of how the measurement device is constructed.

- #16

Science Advisor

Gold Member

- 3,491

- 1,032

PeroK said:The thing to avoid, as I know you know, is to see the HUP as a constraint on the measurement itself.

I think this is partly because several issues get confused. The HUP certainly has "consequences" if you discuss measurements (which is why we talk about things like quantum limited amplifiers) but generally speaking they are indeed "indirect" and often somewhat difficult to get a firm handle on (they simply "pop up" in the math).

- #17

- 32,820

- 4,712

DannyTr said:- I mean repeat the measurement many times for a SINGLE PARTICLE:

- The particle is measured in instrument 1.

- The particle deflects and is measured by instrument 2.

- And so on until a to arbitrary precision for both the original position and momentum are in obtained via trigonometry

You need to go back to the beginning and figure out WHAT are you trying to measure. It is not just any old position measurement or any old momentum measurement.

For example, let's say I want to measure the momentum of an electron that was just liberated off a surface. If I make a "position" measurement first, I will have disrupted the information about its

You can make as many measurements as you want, but each measurement disrupts the

BTW, you need to look at the many Insights and FAQs on what the HUP really is. The measurement of ONE parameter (say position) has no statistical spread, and thus, it isn't what the HUP is saying. So my impression here is that you do not yet have a proper grasp on what the HUP is.

Zz.

- #18

Staff Emeritus

Science Advisor

Homework Helper

Education Advisor

- 16,014

- 2,661

I think this is the best way to explain the nature of the uncertainty principle. I think going on about ensembles obscures this fact and just confuses beginners.vanhees71 said:Thus the uncertainty relations are a statement about the possibility to prepare a quantum system in any quantum state possible.

The OP is assuming that a particle simultaneously has a well-defined location and well-defined momentum, so it's just a matter of being really clever about how to measure those quantities. Once you understand that the uncertainty principle says that such a quantum state is impossible, you have to accept that no amount of cleverness is going to allow you to measure quantities that don't really exist.

- #19

- 24,492

- 15,004

Then it's wrong to say, you cannot measure and observable, because the system you measure is not prepared in an eigenstate of the corresponding operator. You can always measure any observable you can define on a system (at least in principle). The only thing QT tells you is that the observable doesn't take a determined value, if the system isn't prepared such that this observable has a determined value.

- #20

Science Advisor

- 2,942

- 1,469

Heisenberg's uncertainty principle is a fundamental concept in quantum mechanics that states that it is impossible to know the exact position and momentum of a subatomic particle at the same time.

Heisenberg's uncertainty principle is important because it sets limits on the precision with which we can measure the properties of subatomic particles. It also fundamentally challenges our understanding of determinism and the concept of knowing everything about a system at a given time.

The mathematical expression of Heisenberg's uncertainty principle is ΔxΔp ≥ h/4π, where Δx is the uncertainty in position, Δp is the uncertainty in momentum, and h is Planck's constant.

The implications of Heisenberg's uncertainty principle are that there is always a level of uncertainty in our knowledge of the physical world at the subatomic level. It also suggests that the act of measuring a particle's position or momentum can actually change its state.

Heisenberg's uncertainty principle is a fundamental principle in quantum mechanics and is considered to be a universal law that applies to all particles at the subatomic level. However, its effects are not noticeable in our everyday macroscopic world.

Share:

- Replies
- 10

- Views
- 1K

- Replies
- 12

- Views
- 563

- Replies
- 3

- Views
- 177

- Replies
- 2

- Views
- 55

- Replies
- 1

- Views
- 734

- Replies
- 2

- Views
- 812

- Replies
- 2

- Views
- 895

- Replies
- 6

- Views
- 1K

- Replies
- 16

- Views
- 816

- Replies
- 2

- Views
- 761