- #1
- 624
- 11
So I heard on different occasions that chirality it's a very confusing concept and it is often mixed with helicity. I read some definitions and examples from a book and as far as I can tell (at least for QED), helicity it's an operator that gives the component of the spin along the direction of motion and chirality is an eigenstate of the ##\gamma^5## matrix (which doesn't really have a reasonable physical explanation, but it is built in the theory). It seems to me that the distinction is pretty clear and the definition of chirality is quite simple and straightforward, at least mathematically. Am I missing something (I feel I am oversimplifying something and it shouldn't be that easy)? Is it more difficult for QCD, for example? What is the reason chirality is viewed as something complicated? Thank you!