- #1
sutupidmath
- 1,630
- 4
Help creating a dif. eq. for a real life model.help?
A 30 year old woman accepts an engeineeering position with a starting salary of $30000 per year. Her salary S(t) increases exponentially, with [tex]S(t)=30e^{\frac{t}{20}[/tex] thousand dollars after t years. Meanwhile, 12% of her salary is deposited continuously in a retirement account, which accumulates interest at a continuous annual rate of 6%.
a) Estimate dA in terms of dt to derive the differential equation satisfied by the amount A(t) in her retirement account after t years.
Well, i am not any good at differential equations, but i am just trying to give a shot on my own, although i currently am in calculus I, so i am facing some difficulties from time to time absorbing these kind of problems, especially when they are wording ones that require us to derive a differential equation to describe the situation.
I have tried many things on this problem, first i thought that the differential equation derived for measuring the concentration on a tank- as one pipe brings water in while the other pipes water out of tank- would work but i think it does not quite fit in this situation.
so any hints on how to begin to derive a diff. eq for describing this situation??
thnx in advance
A 30 year old woman accepts an engeineeering position with a starting salary of $30000 per year. Her salary S(t) increases exponentially, with [tex]S(t)=30e^{\frac{t}{20}[/tex] thousand dollars after t years. Meanwhile, 12% of her salary is deposited continuously in a retirement account, which accumulates interest at a continuous annual rate of 6%.
a) Estimate dA in terms of dt to derive the differential equation satisfied by the amount A(t) in her retirement account after t years.
Well, i am not any good at differential equations, but i am just trying to give a shot on my own, although i currently am in calculus I, so i am facing some difficulties from time to time absorbing these kind of problems, especially when they are wording ones that require us to derive a differential equation to describe the situation.
I have tried many things on this problem, first i thought that the differential equation derived for measuring the concentration on a tank- as one pipe brings water in while the other pipes water out of tank- would work but i think it does not quite fit in this situation.
so any hints on how to begin to derive a diff. eq for describing this situation??
thnx in advance
Last edited: